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I. Introduction

The development of the theory of causal operators defined on a
resolution space was initiated a decade ago in response to the failure
of classical Hilbert space methods to yield a solution to the quadratic
optimization problems of mathematical system theory. Although this theory
has now achieved a considerable degree of maturity yielding viable
solutions to problems arising jn network synthesis (1], feedback system
stability [9], sensitivity theory [1], and stochastic processes [7,8],
the solution to the original quadratic optimization problems has remained
elusive. Porter and DeSantis [12,23] have solved a deterministic servo-
mechanism problem, Stienberger, Silverman, and Schumitzky [22], have
solved a deterministic regulator problem and Saeks [7], has solved a
stochastic identification problem. The original goal of a general theory
for quadratic optimization, however, has yet to be achieved.

The purpose of the present paper is to present a derivation of the
Wiener-Hopf filter using resolution space techniques. Although still re-
stricted, we believe that the tools employed are indicative of the tech-
niques which will eventually lead to a general theory of quadratic opti-
mization. Indeed, even for this restricted filter the deriviation re-
quires several recently developed results from the thecry of causal
operators. These include:

i) the additive decomposition theorem for Hilbert-Schmidt oper-

atars (10],
ii) the miniphase factorization theorm [7, 19],
iii) the theory of resolution space valued stochastic processes

(7, s, 11],
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3
iv) the quasi-nilpotence theorem for strictly causal operators
[9, 10].
§;
n ﬁ
!
X m ﬁy |

Figure 1. Wiener-Hopf Filter

A basic filtering problem is illustrated in Figure 1, where the signal

"X" and noise '"n" are mixed together. The goal is to pass the mixed signal |

through a filter T (to be designed) to get an output y such that y is the
"best copy" of X that can be achieved. When X and n are assumed to be
stationary, zero-mean and independent stochastic processes and the 'best
copy" of X is defined in the sense that the error e (= X - y) has a mini-
mum variance, the solution is nothing but the classical Wiener-Hopf filter.
(2] In this paper, we would like to formulate this problem in Hilbert
resolution spaces, i.e. we assume X and n to be Hilbert space valued random
variables (zero-mean and independent) and attempt to find a filter T
(causal operator) such that the output y is the best copy of X in the
sense that the "variance operator" of the error is minimal.

Before we continue, let us explain the terminology we have just used.

Hilbert Resolution Space

By a Hilbert Resolution Space, we mean a 2-tuple, (H,E), where H is

a Hilbert space over the real field R and E is a "so-called”" resolution




4
of identity (or spectral measure) in H. [1] A resolution of identity E

is a family of bounded linear operatars, E(A), on H defined for each
Borel subset 4 of the real number set R, satisfying the following con-
ditions:
i) E(A) is an orthonormal projection for each A ¢ 8(R) =
the set of all Borel subsets of real number set R; i.e.
(E(a)1? = E(a) = ECa)*

ii) E(Al) E(Az) = E (Al n 62). ¥ Al. L B8(R)

iii) &t def E((-=, t)) is continuous in the strong operator topology,
goes to 0 as T goes to -=, and goes to IH (identity mapping on H)
as T goes to =,

Defined as an operator from (H, E) to (ﬁ. é). T is said to be causal
E%X, = £, =>'mx = E'rx,
A special class of causal operators termed as left-min%ph&so can be
defined by the following condition

t R O, ~t
sxlssx.f—-.srxlas‘rx?

The significance of being left-miniphase is that the inverse operator
is also causal when the invertibility of the operator is guaranteed. Far
a more detailed survey of the properties of a Hilbert resoclution space,
the reader is referred to (1, 14, 20].

Hilbert Resolution Space Valued Random Variables

When talking about random variables in a Hilbert space, the structure
of the resolution of identity is redundent. But for the purpose of this
paper, "resolution" is included in the title to avoid ambiguity. Let
X and n be random variables [4] taking values in a Hilbert space H with

appropriate probability measure. X is said to have finite first moment
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if for each h ¢ H
E |(X,h)] < = (A)
and E(X,h) is continuous in h.

Here "E" denotes the expected value of a scalar valued random
variable with respect to the probability space underlying X. A random
variable satisfying condition (A) has a "mean" My which is defined by
the equation:

E(X,h) = (h, Hx).

The existance and the uniqueness of M, is guaranteed by condition

X
(A) following from the Riesz representation theorem [21].

In the sequel we deal with zero-mean random variables unless other-
wise specified. Such a random variable is said to have finite second
moment if

E(X,h)? < = for all h ¢ H ()
and it is continuous in h.
As such, X has a "variance operator" Qx which is defined as follows
E(X,h)(X,g) = (h, sz) ¥hget

The existence and uniqueness of Qx is assured by the representation
theorem for bilinear functionals on Hilbert space [8] together with
condition (B). More generally, given two zero-mean processes X and n
with finite second moment, a covariance operator an can be defined as
follows

E(X,h)(n,g) = (h,an g) s VheHl
clearly Qx = QXX'
The covariance operators satisfy the following:
=L QXn M®* for bounded linear operators L and M

1) Qix)(Mn)
1) Q

X+ %" % WS

* { *
iii) QXn = an , in particular, QX = Qx
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iv) Qx is positive, i.e. (h, Qxh) > 0 |

VheH

v) sllx||2 <= if and only if Q is nuclear in which case |
ElIx11? = i)

Finally, we say X and n are independent if QXn = 0.

II. The Optimal Filter
With the terminology defined above, we can now formally state the
problem as follows:
Let X and n be Hilbert Resolution space (X,E) valued
random variables. X and n are zero-mean and independent. X and n

have Qx and Qn as their variance operatar, respecfively. We want

to find a causal filter operator T on (H,E) such that the output

y of the filter (with X + n as the input) is the best copy of X
in the sense that the error e (defined as X - y) has a minimal
variance operator Q.. Note here that Qe is a positive operator hence
it makes sense to talk about the minimal QQ in the partial ordering
of positive operators.

Even though the problem is stated above in its most general form, it
is not solved far the general case. However, we do find an optimal filter
for a special case, characterized by the following assumptions:

i) Qx is Hilbert-Schmidt.

ii) Q » o is invertible.

iii) The optimal filter T to be found is restricted to the class of
Hilbert-Schmidt operators. Note: the assumptions are compatible
with the interpretation of X as a random signal and n as a noise

process.

With these assumptions in mind, let us derive the variance operator
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’ » Since e dgf X -y,
! e=X-y=X-T((X+n)=(I-T)X+Tn

| Hence Q * Q(I-T) o T Qg

; = (I-T) Q (I-T)* + T QnT*
=T (Qx * Qn) ™ - TQx - QxT* + Qx.

. In deriving Qe' independence of X and n has been employed. We have
also noted that Qx S Qx + Qn is positive and self-adjoint. Following
the operator factorization theorem [7, 19, 20], there exists a Hilbert

¥ resolution space® (ﬁ, é) and a linear operator F from (ﬁ, E) to (H, E)
such that (a) F is left-miniphase and (b) Qx ¥ Qn = FF*. Furthermore,

F is invertible since Qx + Qn is invertible. Therefore F'l is causal.

’ Then we can rewrite Q_ as follows:

TP F* T - TQx - Qx ™ + Q
. = (TF - Qx(f'*)-lﬂ(!‘* T - r'lox) +Q - QXF*’l P Q
= [TF - Qu(F") ™) [TF - o (F)™1an + o - o, (F F) L q.
X X X X X

L In the above equation, Qx and Qx(F F*)-l Qx are both positive and in-
dependent of T. Therefore, finding the minimum of Qe is the same as
finding the minimum of [TF - Q, (F0)™3 [TF - Qx(r*)"l)*denoted as Q(T)

’ from now on.

Q(T) is in quadratic farm. The minimum Q(T)occurs when TF = Qx(r*)‘l.
| To fulfill this equation, we need a filter T which is equal to Qx(f‘*).l F-l
i v = Qx(F F*)-l = Qx(Qx + Qn)-l. Unfortunately, this operator is not pecessari-
? ly causal. In order to find an optimal causal filter, we decompose
Qx(P*)-l into two terms;
»

Qx(F’)-l = A + C, where A is the strictly anti-causal part of

Qx(f"*).l and C is the causal part. The existance and the uniqueness of

#This space has been shown to be the reproducing kernel resolution space for

B Q§’ Q. (7,19], which does not, in general, coincide with (H,E). Indeed, the factor-
iZatiln may not exist if one requires that (H,E) and (H,E) coincide.




the decomposition are guaranteed by the fact that Qx(F*)'l is Hilbert-

Schmidt. Readers are referred to (1, 7, 9, 10, 19, 20] for the termin-
ology and details.

Substituting Qx(F*)'l back into the equation for Q(T), we obtain 9

Q(T) = (TF-C~A) (TF-C- A

]

(TF-C)(TF-C)-(TF-C)A* -A(TF~C) +AA® !
In this equation, A(T F - C)* is strictly anti-causal and (T F - C) A#
is strictly causal. 3
By the assumption that T and Qx are Hilbert-Schmidt, each term in the
equation for Q(T) is found to be nuclear. Therefore, the trace of Q(T) is
taken.
Te{Q(T)] = Tr [(T F - C) (T F - C)*] + Tr [A A¥*]
Two terms are dropped in the above equation due to the fact that the trace of
any strictly causal (or anti-causal) nuclear operator is zero [9, 10]. It

is also known that the trace of any positive nuclear operator is positive.

Hence, the minimum of Tr{Q(T)] occurs when T F = C, i.e. when we have a
filter T = C F Y. This filter C F T is causal following our derivation.
Now the only problem left is to verify that Q(C F-l) is minimal. The
verification is straigtforward following from the fact that a positive,
self-adjoint operator is zero if and only if its trace is zero [20].
To summarize what we have done in this section, we formulate the
following theorem. '
Thm. i) Let X and n be Hilbert Resolution Space (H, E) valued
random variables.
ii) X and n are zero-mean and independent.
Qx and Qn denote the variance operators of X and n, respectively.
iii) Qy is assumed to be Hilbert-Schmidt and Q, + Qx is
invertible.

iv) F is a left-miniphase factorization of Qx + Qn'




III.

The, the optimal causal filter operator among the class of the

Hilbert-Schmidt operators is C F'l, where C is the causal part of the

operator Qx(F*)-l.

Conclusions

The Wiener-Hopf filter derived above is sketched diagramatically in
Figure 2. The first transformation, denoted by T usually termed
the whitening filter since its output, the innovations process, is white
noise; i.e. it has a memoryless covariance operator [7]). It is signifi-
cant that for the filter to be well defined it was necessary to take
(ﬁ,é) to be the reproducing kernel resolution space for Qx + Qn rather
than the given resolution space (H,E). As such, one may conclude that
the innovations process naturally "lives" in this reproducing kermel
space thus yielding a further justification for the study of this ab-
stract resolution space even though the given system is defined on a

concrete resolution space.

(H,E) —> (H,E)
rles 1

Figure 2. Diagramatic Representation of the
Wiener-Hopf Filter
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Although the above derivation is restricted to a very specialized
filtering problem we believe that the techniques employed are indicative
of those which will eventually lead to a general theory of quadratic
optimization in resolution space. Indeed, the authors have already made
significant progress towards the generalization of the above concepts to
stochastic control and estimation préblems for systems described by both
input-output and state models [20,24]. Of course, these results, as with
the above Wiener-Hopf filter, apply to distributed and time-variable
systems as well as the classical LLF systems.

A careful inspection of the.derivation of the above filter will
reveal that the restriction that Qx + Qn be invertible can be dropped by
exploiting the fact that the miniphase factor of Qx + Qn is one-to-one
for arbitrary covariance operators (7, 19]. As such, if one replaces F-l
by F-L (left inverse) the above derivation may be carried out without the
invertibility assumption. Finally, we note that the Hilbert-Schmidt
assumptions are required only to make the trace well defined. The de-
rivation, however, remains (formally) valid if one allows arbitrary oper-
ators and hence infinite values for the trace. Alternatively, one may
replace the trace by the memoryless part transformator (1, 10] obtaining
the Wiener-Hopf filter by minimizing the memoryless part of the error
covariance (in the partial ordering of positive operators). This results
is an optimal (though non-unique) filter whenever the operator (Qx(r*)'R]
has a well defined additive decomposition into causal and strictly anti-

causal parts.
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WIENER-HOPF TECHNIQUES IN RESOLUTION SPACE

L. Tung and R. Saeks

Dept. of Electrical Engineering
Texas Tech University
Lubbock, Texas 79409

INTRODUCTION

Wiener-Hopf filtering is a widely used technique in certain kinds of
optimization problems. The purpose of this paper is to formulate Wiener-
Hopf filtering in abstract spaces (reflexive Banach resolution spaces) and
to examine problems involved for the formulation and the solving of the
Wiener-Hopf filter.

Referring to what has been done in the frequency domain of the classical

1, we've found five major problems for the formulation

Wiener-Hop? filtering
of Wiener-Hopf filtering in abstract spaces. They are
i. Random variables in abstrace spaces

ii.

—t

Causality
iii. Operator factorization
iv. Operator decomposition

v. Optimization.

These problems are briefly introduced as follows:

i. Random process can be thought of as a random variable which takes
values in a function space. In order to do so, we need an adequate prob-
ability measure over the space involved. Fortunately, this kind of prob-
ability measure has been defined over metric spacez. For our purposes,
we assume that the space involved is reflexive Banach space, not only
because this kind of space possesses nice properties but also because

stochastic concepts such as "mean" and "variance operation" can be defined

therein. Random variables taking values in reflexive Banach space is
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discussed in section II with probability measure assumed implicitly.

ii. Concepts of causality have been introduced into Hilbert space-
the so-called Hilbert resolution space3. In section III, we extend the
works done for Hilbert space to Banach space. Concepts of causality,
such as causal, anti-causal, miniphase and maxiphase, are defined.
Emphases are given to reflexive Banach resolution space.

iii. Operators to be factorized in the form of KK*, where K* de-
notes the adjoint of K, have to be "positive" and "self-adjoint". These
commonly-used properties among operators on Hilbert space can be extended
to operators which map reflexive Banach space to its dual space. Factor-
ization theorem is given in section IV. Factor operator K is required
to be left-miniphase.

iv. The decomposition of operators over Hilbert space is treaded
in Ref. 3. For operators over Banach spaces, this problem is still under
research. For our convenience, operators are restricted to those which
guarantee the decomposition.

v. As in the classical Wiener-Hopf filtering, we would like to
minimize the variance of the error. However, when Wiener-Hopf filtering
is formulated in reflexive Banach space, the variance of the error is
a positive and self-adjoint operator which can only be minimized in the
partial ordering of the positive operators. This subject is treaded in

section V.

BANACH SPACE VALUED RANDOM VARIABLES

The theory of Banach space valued random variables has been studied

in Ref. 2. For our purpose, we discuss reflexive Banach space valued

random variables with probability measure over the space assumed implicitly.

15
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The development follows that of Parthasarathy (2) and Balakrishnan (4);
the reader is referred to these works for the details.

Let p, 7 denote finitely additive random variables taking values in
a reflexive Banach space B. For such random variables, we assume
E{|(ps x*)|} <= , for all x* ¢ B*

(2.1)

E{(p, ‘x*)} is continuous in x*
Here E{‘} denotes the expected value of a scalar valued random variable !
with respect to the probability space underlying p. For random variables which
satisfy condition (2.1), there is a unique vector mp in B satisfying
E{(p, x*)} = (mp, x*), for x* e B*. l
mo is termed as the mean of random variable p. As in most stochastic
processes, mean is not our prime concern. Therefore, in the sequel we
only deal with zero-mean random variables. For such random variables,
we further assume
EC](o\x*) (my y*)|} <=,
for all x*, y* ¢ B*
E{(p, x*) (m, y*)}

is continuous in x* and 6*

(2.2)

It can be shown that condition (2.2) implies condition (2.1). Now
let's take a look at E{(p, x*) (m, y*)}. If we fix y*, then E{(p, X*)
(v, y*)} is a bounded linear functional on B* (so an element of B**=B),
This means that there exists a unique Pyx in B such that E{(p, x* (n, y*)}

.(py*. x*) for x* ¢ B*. Define a mapping Qp“ = B* + B,by Qpﬂy* =py*’

Hence E{(p, x*) (m, y*)} = (Qpﬂ y*, x*).




It can be easily proven that Qp“ is linear. Moreover, Qow is bounded.
Qow is termed as the covariance operator of random variables p and w.
Covariance operators satisfy following conditions:

i. Q(Lp) (Mw) = | QDHM* » where L and M are linear bounded operators
on B.

ii. Define Qp- on. then Qp+“- Qp+ Qp" + Q"p+ Q. Qp is called the

variance operator of p.

LAAE Qpn » Q:p » in particular Qp = Qp*

iv. Qp is positive in the sense that (Qp y*, y*) = E{(p, y*)z); 0,
for all y* ¢ B.

These conditions result from straight forward manipulation of the
defining equation for the covariance operator. Using Qp", we say that

p and n are independent if Qp" =0.

BANACH RESOLUTION SPACE

By a Banach resolution space, we mean a 2-tuple, (B, BF). where B
is a Banach space and 8F is the so-called resolution of identity in B,
which is defined in the following:
(A) Resolution of identity

Definition 3.1. Let B be a Banach space. By a resolution of identity:
BF, in B, we mean a family of linear bounded operators, gF (a), on B
defined for each Borel subset, A, of the real number set R, satisfying
the followings:

1. BF(R) = Ig-identity operator on B

17
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set of all Borel subsets of R.

n n n
ifi. gF(ua i) = z gF(81), where {a;} is a finite set of disjoint

Borel subsets of R. 1

iv. [|gF(a) x [[< [[x][, for all & e 8 (R) and x e B (Equivalent
statement: Norm of BF (a) is either 0 or 1)

The subscript on the left in the notation, BF’ is to notify that
the resolution of identity is defined over space B and will be dropped
if no ambiguity would result.

Working with a Banach resolution space, (B,BF). it is natural and
important to ask whether we can define a resolution of identity in B*,
the dual space of B. The following theorem gives us the answer.

Theorem 3.1. Let (B, BF) be a Banach resolution space, then
{gF *(a) |a € 8 (A)} is a resolution of identity in B*-termed as the
induced resolution space, (B*, BF*).

With the resolution of identity defined as above, we'd like to point
out that although Hilbert space is a special case of Banach space, Def-
inition 3.1 does not lead to a Hilbert resolution space3. In Hilbert

resolution space, the resolution of identity, {E(a) |a € 8 (R)}, sat-
E(a).

isfies an additional condition, i.e. E* (a)

Example. Let p, q € R, such that 1/p + 1/q = 1. Then L, is a reflexive

Banach space with dual space L_. For each f e L_, define (f,q)

q P
=jaf(t) g(t) dt. Let F (a) f(t) = x(a) f(t) =0 , téa
f(t),tea

It is easy to show that {F (A) | Aeg(R) is a resolution of identity

in Lp and F* (a) = x(a) for al1 4 ¢ B8 (R).

18
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(B) Concepts of causality :
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Definition 3.2. Let (X.XF). (Y.YF) be Banach resolution spaces.
X+Y, is a linear bounded operator

ft g, = Ft

1
r MY %

(i) T is causal if - YFt Tx!= YFt T X,, where

ta -0 =
l gf = gFl-=.t) , B= X, y.

F

(i1) T is anti-causal, if X't X1 = XF

F - Et
t:x‘?-thTx1 YF sz'

where BFt = BF (t,=), B =X, Y.

OPERATOR FACTORIZATION

(i1i) T is memoryless, if T is causal and anti-causal. .i

t

(1v) T is left-miniphase if ,F° X, = (FExy o FETx = FOT -

(v) T is left maxiphase if (F. x; = \Fo X, _ yFo Tx; = (F T x,
(vi) T is right-miniphase, if T th {X} = F (V)
(vii) T is right-maxiphase, if T XFE Xy = FY

According. to above definitions, we've found the following results:
(1) Miniphase, left-or-right-, implies causality.
(2) Maxiphase, left-or-right-, implies anti-causality.
(3) When X and Y are reflexive, we have
(a) T is causal <= T* is anti causal
(b) T is left-miniphase <= T* is right-maxiphase.
(4) When X and Y are reflexive and T is invertable, we have
(a) Miniphases are equivalent, so are maxiphases.
(b) T is miniphase = T and T} causal

1

T is maxiphase =T and T ° anti-causal.

Readers are referred to Ref. 5 for the details.

in the form desired. For our purpose the desired form of factorization is K K*.

Not every operator over arbitrary Banach spaces can be factorized
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An operator to be factorized in this form has to be positive and self-adjoint.
These two commonly-used properties for operators over Hilbert space can be
extended to operators that map from reflexive Banach space to its dual

space. They are defined as follows:

Definition 4.1.

(i) Let B be a reflexive Banach space. |

(ii) Q= B+B*, is linear and bounded. Q is said to be positive if
(x, Qx) > 0, for each x € B. Q is said to be self-adjoint if Q* = Q.
Note that Q* : B**=B » B* so it makes sense to compare Q with Q*.

For positive and self-adjoint operators, we have the following theorem:

Theorem 4.1.

(i) Let B be a reflexive Banach space.

(ii) Q : B-+B*, is linear, bounded, positive and self-adjoint.

Then there exist a Hilbert space H and a linear bounded operator K :

H+8, such that Q = K K*G.

\lhen dealing with Banach resolution spaces, the usefulness of operator
factorization is limited unless the factor operator possesses certain causal
properties. Referring to factorization of the spectral density in classical
Wiener-Hopf filtering, we have found what we need is a factorization theorem
which gives a causal operator and guarantees a causal inverse once the
existance of a inverse is granted, i.e. a theorem that gives a miniphase
factorization. Based on Theorem 4.1, we construct the resolution of
identities in spaces involved and we come up with the following theorem.
Theorem 4.2.

(i) Let (B,F) be a reflexive Banach resolution space. (B*, F¥)

denotes the induced resolution space.
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'
‘ (ii) Q = (B,F) - (B*, F*), is linear, bounded, positive and self-
5 adjoint. Then there exist a Hilbert resoiution space (H,E) and a linear

! bounded operator K = (H, E) + (B*, F*) such that

1. Q=KK* ‘
2. K is a left-miniphase

\: 3. The factorization is unique up to a memoryless unitary

| transformation.

q For the proof of this theory, please refer to Ref. 5.

HIENER-HOPF FILTERING FORMULATED IM REFLEXIVE BANACH SPACE

With the preparation of sections II, III and IV, now we are ready

for the formulation of Wiener-Hopf filtering. The formulation is done

as follows:

Let X, n be random variables taking values in a reflexive Banach
resolution space (B, F). X denotes the signal and n the noise. Both
X and n satisfy condition (2.2) in section Il and they are assumed to
be zero-mean and independent. As such, X and n have Qx and Qn as their
variance operators respectively. The problem we are facing is to find
a filter, T : B-B, linear and causal, to operate on X + n such that the
error, defined as x-y, where y is the output of T, has a variance operator
that is minimal in the partial ordering of the positive operators. We
will describe this ordering right after we find the variance of the error.
Let e denote the error and Qe denote its variance operator. Since
e Se;_y = X = T(X+n) = ([-T)X +Tn we have

Qe = (I-T) Qx (I-T)* + T Qn T*, following from the results in section

II. Rearranging terms in Qe’ we get
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My ™ T(Qx+0n)T* =Q T* -~ TQy + Q.
Qe is dependent on T. We write Qe (T) to notify the dependence.
Qe (to) is said to be minimal for some filter To' if
Qu(T) < Qu(Ty) = Q(T) = Q(T)) (A <B if (B-A) is positive). :
In the equation for Qe‘ Qx % Qn represents the variance operator
of X+n, hence is positive and self-adjoint. Therefore, by Theorem 4.2,
there exists a resolution space (H,E) and a 1inear bounded operator
K = (H,E) - (B,F), such that (a) Qe = K K* (b) K is a left-miniphase.
Without further assumptions, the formulation would be stuck right here.

At this point, what we need is an invertable factor operator K. The

invertability of K can be guaranteed by the invertability of QX % Qn.
There are several ways to secure the invertability of QX + Qn' One way
is to assume that QX + Qn in onto and Qn is positive definite. With an
invertable factor K, Qe can be rewritten an

Qg = TKKFT*-Qy T - KQy +Qy = (TK-Qy (k) ™1} tkaTe-171g ) +
0y - (k)7 kT gy = TkeQu (kM) 7Ty (TR0 (k) I+ - 0y (kk%) T,

The Tast two terms in the above equation, Qy and QX(KK*)‘lQX, are
positive and independent of T. Hence, to find the minimal of Qe is the
same as to find the minima) of {TK-Q,(K*)™1} {Tk-Q, (K*)71}* - denoted as
Q(T) in the sequel. Right now, we are facing the same kind of problem as
in classical Wiener-Hopf filtering. Minimal Q(t) occurs when T = QX(K*)'IK'I,
but it does not represent a causal system in generai. In order to get a
possible optimal causai filter, can we decompose QX(K*)'1 into "causal part"
and "strictly anti-causal" (a term to be generaiized in Banach resolution
space) and under what conditions can we do so? This subject has been
treated in Ref. 3 and Ref. 7 when the reflexive Banach space happens to
be a Hilbert space. However in reflexive Banach resolution spaces, the

subject is still under research. While we follow the same pattern as that
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of classical Wiener-Hopf filtering in frequency domain, we would 1ike

to ask whether this decomposition would work and how it would. The

same question in classical Wiener-Hopf filtering is not directly answered
in frequency domain. In order to find the answer, let's assume the
decomposition. Let

Qx(l(")'1 = C + A, where C is the causal part of Qx(K"')'1 and A is
the "strictly anti-causal part" (a term to be generalized in Banach
resolution space). Then

Q(T) = {TK-C-A} (TK-C-A}*

= (TK-C} {TK-C}* - A{TK-C}*
= {TK-C}A* + AA*

To claim TK-C=0 is the condition for minimal A(T), we should demon-
strate that those cross terms,{TK-C} A* and A{TK-C}*, have no effect on
the ordering of Q(T). Again when the reflexive Banach resolution space
is Hilbert resolution space, we've found two ways to achieve this. The
first one is to take the trace of Q(T). Surely, work has to be done to
guarantee Q(T) being nuclear. The second one is to take the memoryless
part of Q(T). This is justified once the decomposition is given. However
we've also found advantages and disadvantages to each way. For the method
of taking trace, it gives a minimal variance operator once the maximum
of the trace is found, but we have to restrict certain operators, such
as Qx and T, to be Hilbert-Schmidt. On the other hand, the method of
taking memoryless part works for a broader class of operators-operators which
have decompositions, but it does not give a minimal variance operator.

The best we can have is a variance operator that has a minimal memoryless
part. However, there is an important aspect for taking the memoryless

part. This method allows us to generalize the idea in reflexive Banach

space, while the other method does not. The reason is quite simple, for
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it does not make sense to talk about the eigenvalue of an operator that
maps from Banach space to its dual, not to mention the trace of such an
operator, while it does not make sense to take the memoryless part given
the decomposition. Readers are referred to Ref. 5 for the details of
Wiener-Hopf filtering formulated in Hilbert resolution space. When all
the problems mentioned above are solved, we would come up with the optimal

filter T0 = C K'l. a causal system.

CONCLUSION

Wiener-Hopf filtering has been formulated and solved in Hilbert
resolution spaces. In this paper, we outlined the formulation in re-
flexive Banach resolution §pacé and the possible way of solving it.
Generalization would be accomplished once the theory of operator de-

composition in 3anach resolution space is completed.
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Reproducing Kernel Resolution Space and Its

Applications [I*

Tung+ and R. Saeks®

Abstract

This paper extends the concept of a reproducing kernel resolution space to a
Banach spaca satting. The resultant reproducing kernel resolution space, however,
remains a Hilbert space thereby permitiing a number o¥ problems in mathematical
system theory to be transformed from Banach space to Hilbert space. Particular
enphasis is given to the study of Banach space valued random variables and the

scattering operator formalism for an electric network.

[. Introduction

In a previous paper12 one of the authors exhibited the relationsnip between

19

the factorization problems which arise in mathematical system theory and the

3. The

reproducing kernel resolution spaces introduced by Kailath and Duttweiller
purpase of the present paper is to show that much of this work can be extended to
a Sanach space satting without the loss of {ts Hilbert space charactar. Indeed,
it {s shown that th; reproducing kernel resolution space for a positive self-ad-
Joint operator mapping a reflexive Banach space to its dual is a Hilbert spaca.
Since this {s precisaly the class of operators encountered when the factorization
problems of mathematical system theory are extended to a 3anach space setting, the
resultant theory allows one to transform systems problems from a Sanach space _to
a Hilbert space satting. In particular, it {s shown tn;t the study of cartain
3anach space valued random variables can be carried out in the reproducing kernal

Hilbert resolution space defined by its covariance. Secondly, it {s shown that an

+Jept. of EE, Univ. of Texas at ET1 Paso, E1 Paso, Texas 79968.
clept. of €S and Mathematics, Texas Tech Univ., Lubbock, Texas 794Q9.

*This research supported in part by AFOSR Grant 74-2631.
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electric network with voltage and current vectors defined in Banach space may be

characterized by a scattering operator defined on an appropriate reproducing
kernel Hilbert resolution space.
A Banach resalution space is defined and its elementary properties developed.
We note that the axioms for a Banach resolytion space are weaker than those re-
quired fora Hilbert resolution space and, as such, the theory developed does not
necessarily specfalize to the classical Hilbert resolution space theory. The
axioms are, however, sufficient for the present purposes. In particular, such con-
cepts as causal, anticausal, miniphase, and maxiphase operators are well defined.
In the third section a factorization theorem for operators mapping a reflex-

5'7. Vakhan1aa. and

ive Banach space to its dual recently developed by Chobanian
Masanig is applied to Banach resolution spaces to develop miniphase and maxiphase
factorization theorems. W{ith the help of these theorems a 'un1qu¢'_factor space

~ the generalization of the RKRS to Banach resolution space - is formulated.

Hh11e sections II and III deal with fundamental theorems, sections [V and V
are devoted to thevapplicat1on of these theorems. The first appiicatfon con-
sidered i{s the study of reflexive Banach space valued random variables. With the
probability measure over the Banach space assumed implicitly stochastic concepts
such as mean and covariance operator are defined. Since the resultant variance
operator is a positive self-adjoint mapping from a reflexive Banach space to its
dual the factorization theory developed in the previous section may be invoked
to transtorm the given random variable into {ts reproducing kernel Hilbert resolut-
ion space.

In section V similar factorization techniques are used to define the scattering
variables for an electric network characterized by voltage and current vectors
taking values in a reflexive Banach space and its dual, respectively. Here, the
normalizing operators take the form of maps from the given Banach space %3 an
appropriate reproducing kernel Hilbert resolution space resulting in a scattering

operator which is defined on a Hilbert space.
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2 I1. Banach Resolution Space |

‘ B8y a Banach resolution space, we mean a Z-typle. (B,BF). where B is a Banach ‘
spacs and BF {s the so-called resolution of identity in B, which is defined as
follows.

Resolution of I[dentity in Banach Space
Def. II.1. Let B be a Banach space. B8y a resolution of identity, BF.
in B, we mean a family of bounded linear operators, BF(A), on B defined for
each Borel subset, A, of the real number set R, satisfying the following
conditions:
i. BF(R) = IB s identity operator on 8.
H. gFlay) gF(ag) = gFlay N &,), for all 4y, 3, ¢ 3(R) = the
H set of all Borel subsets of R. :
1i1. Bf(g Ai) = g BF(Ai).{Ai}?: finite set of disjoint Borel '
subsets of R.
iv. ||BF(A)x|| < |Ix|], for all & ¢ 8(R) and x ¢ B (equivalently
the norm ofBF(A) is either 0 or 1).

The subscript on the left in the notation, oF, 1s to signify that ?
the resolution of identity is defined in space B8, and will be dropped if no am-
biguity would result.

Working with a Banach resolution space (8, gF), it is natural and :
important to ask whether we can define a resoluton of identity in 8+, the dual

space of B. The following theorem gives us the answer.

Thm. II.1. Let (8B, BF) be a Banach resolution space. Then

(BF(A)'IA ¢ 8(R)} 1s a resolution of identity in 8*. This resolution of iden-
tity in 8* {s called the induced resolution of identity.

The proof of this theorem follows from straightforward manipulation of the
definitions of adjoint operator and resolution of identity.

The concept of a resolution of identity can be bdest uncderstced by
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examples. Two typical examples are {1lustrated as follows.
Example 1. Lp: the Banach space of equivalence classes of functions
that map R to R and satisfy the following inequality,
I: |#(t)|P dt < =, where 1 < p < =.
Cefine
Q0 ,fortgéa
F(a)f(t) = x(a)f(t) o for f e L.
f(t), for t ¢ &
[t is easy to show that {F(a)|a ¢ 8(R)} is a resolution of identity in Lp once
the properties of x(a) are explored.
Example 2. Let p, q ¢ R such that 1/p + 1/q = 1. Then Lp is a re-
flexive Banach space whose dual space fs L. Forall fel.,9ge L.,

q P q
define

(f.g) = [T f(t)g(t) dt.
Let {F(a)|a ¢ 8(R)} be the resolution of identity 1n.Lp as defined in Example 1.
Then we have

" (F(a)f, g) = [T Ix(a) () Jg(e) dt
= [, flt)g(t) dt
[ f(t)Ixa)g(t)] at

= (f, x(a)g)

So {x(a)|a ¢ 3(R)} 1s also the induced resolution of identity in Lo

Caysality of Operators
Def. I11.2. Let (X, xF). (Y, YF) be Banach resolution spaces. T : X—Y, is

a linear bound operator.

1. T is said to be causal, if
ng X ® th Xy = YFt u xT" YF: T xz, where

BF‘ = gF(-=, t), B =X, Y.
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ii. T is said to be anti-causal if i 32
Fe %1 = yFe %o = F T Xy = (Fo T xy, where 87t " 18787, 5 2 x, v.
{1i. T is said to be memoryless {f T ts causal and anti-causal.

iv. T is said to be left-miniphase if
t 3 R
YF Tx=Q < XF x=Q,
v. T is said to be left-maxiphase if
YFt Tx=0 <= th x =0,
vi. T {s said to be right-miniphase if
T[,F [X1] = (F, [V,
vii. T is said to be right-maxiphase if
T(,FEIXIT = (FEOYL

Based on the above definitions, the following results may be reidily verified?
1. If T is miniphase, left- or right-, then T is causal.
2. If T is maxiphase, left- or right-, then T is anti-causal.
3. When the spaces involved are reflexive and T X -« Y {s bounded and linear, then
(a) T 1s causal {ff T* is anti-causal
(the induced resolutions of identity have been used
for the determination of the causality of T*)
(b) T is left-miniphase iff T* {s right-maxiphase
4. When the spaces involved are reflexive and T:X « Y-is invertible.
(a) T is left-miniphase(maxiphase) if it is right-miniphase (maxiphase).

(b) T is miniphase = T & !

.1 are causal
T is maxiphase = T & T*' are anti-causal.

The reader is referred to Ref. 2 for the details.

III. Operator Factorization and RXRS
A number of applications arise in system theory wherein it is desired to

factor an operator, Q, either in the form KX* or T*T. For an operator to bde
factorized in either of these forms it has to be “positive" and “self-adjoint”.
Although undefined in general, these two ccmmonly used properties for operitors
over Hilbert space can be extended to operators that map a reflexive 3anach space

to its dual space. They are defined as follows:
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Oef. III.1. 1. B is a reflexive Banach space. %s
ii. T: 8 - 8*, {s linear and bounded.

T is said to be positive if
(x, T x) >0, for al1 x ¢ B.

T is said to be self-adjoint if
Tes=s T,

Note that T*: B**=8 + B*, so that it makes sense to equate T and T*.

For positive and self-adjoint operators, we have the following theorem. The
theorem is statad without prooft Interestad readers are referred to Masani's work

(9).

Thm. III.1. Let Q: B - B*, be a linear, bounded, positive and self-adjoint oper-
ator, where B is a reflexive Banach space and 8* is its dual. Then there exists a
Hilbert space H and a 1inear bounded operator XK mapping H to B* such that
Q=K e, 6171:8,9

Left- and Right- Factorization
Although Thm. [II.1 yield a factorization through a Hilbert space, which is valid

for any linear, bounded, positive, seif adjoint operator mapping a reflexive Banach
space to it dual our applications in System Theory require that the factors, K, have
appropriate causality properties. Based on Thm.III.1, we construct appropriate reso-

lutions of identity in the spaces involved which yield the following theorems.
Thm.I11.2(1eft-factorization).

i. (8,.F) is a reflexive Banach resolution space.
ii. Q: (B, F) - (B*, F*), where F* is the induced resolution of identity
in 8*. Q i{s linear, bounded, positive and self-adjoint.
Then there exists a Hilbert resolution space (H,E)' and a linear bounded
operator K: (H, €) - (8*, F*), such that
1. Q@ =KK*,
2. K is left-miniphase,

3. The factorization is unique up to a memoryless unitary transformation.

¢+ The requiremants for a Hilbert resolution space are more restrictive than those for
a Banach resolution space, namely £(a)* = E(a) is required for a Hilbert resolution
space, which condition does not make sense in a 3anach resalution space.

:
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Thm.III.3(right<factorization).
i. Q: (B, F) = (B*, F*).

i1. Q is linear, bounded, positive and self-adjoint. Then there exists

a Hilbert resolution space (H' g) and a Tinear bounded operator T:

(8, F) = (§. §)» such that :
1. Q=aTeT,
2. T is right-miniphase,
3. The factorization is unique up to a memoryless unitary transformation.
The proof's for the above theorems are time-consuming and they are not our prime
concern. Hence, they will not be presented here. Interested readers are re-
ferred to the Appendix for their proofs.
Reproducing Kernel Resolution Spa R

There is a common statement in each theorem of the previous paragraph, i.e.
"The factorization is unique up to a memoryless unitary transformation”. For cer:ain
applications such as the study of Banach space valued random variable, we would like
to eliminate this ambiguity. This {s achieved via the concapt of a reproducing
kernel resolution space. First, W& define some notation.

Cef.III.2. Q, X, ant T are defined as in the previous paragraph

~
f.e. QaxK*=T*T. Lat Hy = R(Q) T, Hq = R(T*)". For x, y in R(K), let
b -L Loy
(x4 y) HQ = (K" x, K~ y)H, and for w, z in R(T*), let

(2. u)?c‘q o (Tet z, L) A

L

Define £° = K ET K™C on the H, and Qst = T* E.T*" " on H,, then extand them to
Q HQ ~t a.Q

8(R). Note that € corresponds to € in Thm.III.2.

¥ R(X) denotes the range of the operator, X.
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Then, we have the following theorem.

The.III.4. (;a. QE) (the so-called RKRS) defined above is a Hilbert resolution
space which {s independent of the factorization Q = X X* used in its definttion.
Moreover,

i. (Hq. QE) is unitar11y equivalent to (H E).

i1. R(Q) is dense in HQ i

11, wﬁ-x-01ﬂs‘x-o.mrx¢%.

~

N N ~
ifv. K: (H, E) - (HQ. QE), is memoryless,

where (ﬁ, E) corresponds to (H, E) in Thm. [II. 2.

~ ~
Proof: . HQ s R(K), so HQ is a linear vector space.

11, By definition, (x, )y = (k" x, k™ yIy. It is
Q
trivial to show that
N
1. (x,y) = (y, x), forall x, y ¢ Hqe

')
2. (x, ay) = a(x, y), for all a ¢ R, X, ¥ ¢ Hp
3. (xoy*2)=(x,y),*(x, 2) forall x, y, 2 ¢ ;0'
“~ L L &
4. (xy x)y = (K7" x, K™% x)y 2 0,for all x ¢ Hq and
Q

-L

since K is linear, x # 0 implies X = x # 0. So

~
(x, x)>0, for x ¢ HQ and x # 0.

So (x, ¥)y .
s Hq is an inner product over HQ

~

iii. Let (x1) bo a Cauchy sequence in H Q' then (K xi} is
Cauchy in H. So X B xy = 2, for some 2 ¢ H 8ut

~

~
z=K -t K z, SO Xy - K 2 in H. Hence HQ is a Hilbert

spaca.

iv. Assume Q = X X* = X' X'*, both X and X' are left-minipnase
. Y A" A"
factorizations af Qon factor spaces (M, £) and (H', £'), re-

spectively.

~

1. 8y Tm.III.2, there exists a memoryless unitary transfor-

e —
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vi.

vii.

mation U: (“. E) - (ﬁ‘. E'). such that K U = K'. So
R(K') = R(K U) = R(K), since U i{s onto. Hence ﬁQ is

independent of the factorization.
2. bzt e kot 2 0wy

TR S TR Wiy

» (l('L 2, k-t W)y, for all

Z, w¢e ﬁq. So the inner product is independent of the

factorization.
3. ke Ptetauy ity teaxuptylt gt |
4
sketuulktaxet«! |

Therefore, QE is also independent of the factorization. ke
~
Define K: N « ﬁq by K x = K x, for all x ¢ H. Then X is 1-1
and onto and for all x ¢ ﬁ.
~ L 2
UK x[i2 = pex)2 = 1t ex? o= xi2
H ﬂb X N

So K is a unitary mapping. Furthermore, we have

¥ ¥t -l Y, s
QE = KE*"K " on HQ and for all z ¢ Hq. there is a unique

4 % -L Yal
X €H such that 2= X x=Kx. Sox=XK " z=X "z,
.L \-] '\.t ~ ‘\ot ’\a-]
f.e. K™ = X ', Hence QE s X E*X '. This means that

N

(ﬁb. QE) is unitarily equivalent to (N, E).

R(Q) = R(X X*) = K[R(K*)] = K[R(K*)]
Since R(K*) i{s dense in R. 50 ;{R(K')] is dense in HQ t

~
(for X is unitary).
1. X is left-miniphase, so

£

N
x =0 1#f (FS)* K x = 0, for x €H.

2. For all z ¢ ﬁq. there axists x ¢ ﬁ such that

zsXxorxsktz so
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5 Erktzaoire (F‘)-z-o.zcﬁo.

3. If (F4)* 2 = Q, then

frzaxEtktzan.

qQ
And 1f03‘z-o.1.o.x3‘x‘Lz-o. then
ekt za0. so(FY*z=a.
N N N N N
| viii. K: (H, E) - (Hq. QE), is actually K defined in v. K is left-miniphasa,
f s0 EC x = 0 1ff (FE)* K x = Q. Home%"x-oiffqﬁ"n-o.far

‘ x € H. But since k = K, the above equation implies 2 {s also a

' o, vl
left-miniphase. So K" = K™ is causal (by being left-miniphase),
and 2 is also anti-causal. Therefore, k is memoryless. #

. Following immediately from the previous theorem is a rather interesting result which
gives us a sort of “"unique" left-factorization. This result is indicated in the next
corollary.

' Car. Let (ﬁq.QE) be defined as in Thm.IIl1.4. Then there exists a left-factorization

p: (ﬁq. QE) ~ (8*, F*), such that

)
i. Pz=z2forall 2¢ Hqig B*,
ii. P*bH =Qb, for all b ¢ 8.
Proof: B8y Thm.III.4, we have X: ¥~ ﬁq. a memoryless unitary operator, and

k x =K x, forall x ¢ ﬁ. Define

p sk 2": ﬁb < B*, Then
1. Forall z ¢ ﬁ , there exists x ¢ ﬁ such that k X %32,
2. By Tm.III.4&,

=% . - S

QE z2=Q iff (F)*z=0, for 2 ¢ Hq. So

A“t :' - d
QE 2sQ iff(F)*P 220, forze Hq. Hence P is

left-miniphase.

A N



vl vl ~
3. Prb s (KK )*b e (K )*KebeaKK*baKKvbaqb,
for all bcB8. And PP*b =P (Qb) =Qb. #

The “"uniqueness" we mentioned is due to the fact that (:I‘Q. QE) is independent
of the factorization.

As in the previous paragraph, there are corresponding dual theorems to Thm. III.4.
i These theorems are described belaow, with proofs only sketched.
Thm.III.5. (QQ. QE" defined at the beginning of this section, is a Hilbert

i : space which 1s {ndependent of the factorfzatfon, ¢ = T* T, used in {ts definition.

Moreover,

; (gq. Qg) is unitarily equivalent to (Q. 5).

11. R(Q) is dense in 50’

1. (FY* x = 0 1£f 5‘ x =0, for x ¢ H,
iv. T (n, 5) - (nq. Qg). is memoryless..

Proof: {. The proof of (EQ' QE) being a Hilbert resolution space
and being independent of the factorization is essentially
the same as that of Thm.III.4, and therefore is omitted.

Ve e
i{. QOefine T  : (Q. 5) - (ﬂo. QE). by T x = T* x for all

~,
X € Q. Then T’ is 1-1 and onta. For all x ¢ Q.

A 9 -

" (12 = 11 1 = 1] (™t e (12 = 11x] 18
R N

v g
So T 1s a unitary mapping. With T defined as above, it
is routine to verify the rest of the theorem. But we need
to note that T*: (ﬂ. E) - (HQ' Qg) in iv., is actually
the ™ defined above.
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Cor. (Qq. QE) defined as above, then there is a right-factorization (mini-

phase) of Q, q: (B, F) = (ﬂq. QE). such that
i.qx=Qx, forall x¢ 8,

fi.qv 2=z, forall 2 ¢ QQ ch*.
Proof: By Thm.IIlI.S, ?': i QQ' {s memoryless and unitary.

Define q = T* T: (B, F) + (Hqe AE). Then
. tor of
1. qxaT* T x=« T (Tx) =Qx, for all x ¢ 8.
~ ~ N N
1. Q2= (T*T)* 2= T™* Tz e T™™(T 2) =z, for all
~
Z¢ HQ' since T* {s unitary.
i1i. By Thm.III.S,
QEt x=0Q1iff (Ft)' x =0, for x ¢ §. So

QEt x =0 iff (Ft)' qQ* x = 0, for x ¢ . So q* is
left-maxiphase, i.e. q 1s right-miniphase.
iv. qrqbe(TeT)e(TeT) b ¥TvrTbeTeTH=qb,

for all b ¢ B.

IV, nacgh Space V Random Variables
One way to view a random process is to consider it as a random variable which

takes values in a function space. Of course, we have to use an adequate proba-
bility measure to make the idea work. Fortunately, this kind of measure has

3.4 In this section, we first define stochastic

been defined for metric spaces.
properties such as “mean” and “variance operator” for a Banach space valued
random variable. We then look into the factorization of the variance operator
and the results that can be derived therefrom, i.e. the RKRS. Intarestingly
enough, the RKRS of a Banach space valued random variable is a Hilbert space.
This seems to be a nice result, but there are obstacles for further application.

All these will be discussad in the following.
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(1) Covariance Operator

A probability measure on Banach space is a rather complicated mattar. In the sequel,
we implicitly assume its existence as indicated by the expected value symbol E{-}. The
reader is referred to reference 4 for the details. '

Let o, = denote finitely additive random variables taking values in a relexive
Banach space B. Assume

1. E{|(p, x*)|} < =, for all x* ¢ B* (@)
3 a
{1. E{(p, x*)} is continuous in x*.
Then there exists a unique moc B such that
E{(D. X*)} - (mpv X’)
Since E{(p,x*)} 1s a continuous linear functional on B8*, so it is represented by an element

of B** = B, m, $s termed the mean of the random variable p. It has the following properties

» = +
i mp*w mp m_,

He [lm ([ <€),

ifi. If L: 8 + B, is bounded and linear, then
™, ® L m .

As in most stochastic processes, the mean is not our prime concern. In the sequel
we thus assume that all random variables have zero mean. For the definition of the
variance operator, we have to assume the following.

i. E{|(ps x*) (v, ¥*)|} < =, for all x*, y* ¢ B*,

i1. E{(p, x*) (r, y*)} is continuous in x* and y*.

(b)

It is easy to show that sondition (b) implies condition (a). Furthermore, we have the
following Temma to facilitate the definition of the variance operator.

T —
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Lemma. A continuous bilinear functional, (x|y), on a Banach space B is also

bounded (i.e. there exists M ¢ R such that

LxI 7CxL <] yl]) <M, for all x, y ¢ B).

Now if we fix y*, then E{(s, x*) (r, y*)} is a bounded 1inear functional on 8*
(hence an element of 8**=8). This {mpifes that there exists a unique Pye € B such that

E{(py x*) (w, y*)} = (py.. x*) for all x* ¢ 8*.

If we now define a mapping QD': B* - By
QD' y‘ - Py.'

it can easily be verified that pr is linear. Morever, Qon is bounded, since

IQ y* ™ P = sup _Lgm; x') ('-Tnf) "L
1, 711 = lpyel] = sup Lzt

« sup MLLx#1 1o L1y |

Toxr | [xv]

= Ml [y*{].

The operator Qow is termed the covaf1ance operator of the random variables o and .

Covariance operators satisfy the following conditons:

- ——

o Qo) (ke) "L G K, where L and K are bounded and

linear operators on 8.
 § 8 . g
Let Qp . Qpp. then
Qp'hr - Qp + Q.“Hl’ . Qu’o * qw'

Qp is called the variance operator of o.
- L 4 L ]
Hi. Q) = Q.5 In particular, Ll
fv. Q, fs positive; f.e. (Q, y*, y*) = El(p, y*)?} 2 0.

(2) QKRS Far nach Spa al Random Variables

As mentioned in the previcus paragraph, a reflexive Sanach space valued random

variable has a variances operator Q° which {s positive and self-adjoint. Then Thm.III.Z
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and Thm.[I1.4 come into the picture and we have the following: There exists a Hilbert

resolution space (H,E) and a left-factorization (miniphase) X: (H,E) - (B,F) such that
0° = K K*. Moreover, the RKRS, (Hp. pE). which corresponds to (ﬁQ.QE) in Thm.III1.4 is

also assured to exist. Since we have R(Q,) g,Hn c B, one of the natural questions to
ask is whether the random variable takes values only in Ho’ and, {f it does, what can we say

about the original random variable. The answer to the first part of the question is no, and a
countar- 'example has been construé%ad.z However, if we happen to have the random var{iable takii.J

values in Ho' we would have the following properties. First define Bo -'RTETB. where
K: H = B. Then °b: 8, = H and we have (kY H - 83. Consider
E((o, x)p(n. y)p}, for x, y in H .
EC(os %) (00 ¥) 3 = B o, k7 x)(k7t 6, k7L )
= EClos (K™% K x)8) (o, (KH)* k7L )83
vote: (K4)* k™t x and (K'L)* k-t y are elements o} 8y , i.e. Tinear functionals

on Bo. By the Hahn-8anach theorems'II. there exist x')and y* in B* such that

x*lg = (K'L)’ Kt x, .
°
and r'so - (K.L)' K-L y.
So
and (0, (K-L). K.L X)Bo = (p, x*)B
(os (K7byw k7t Mg, = (o0 ¥,
Thtnfol‘!.

E((Dt x)p(ﬂn Y)p} = E{(p, x')B(Do y‘)a}
= (Qp x*, ¥y*)g
= (KK% x%, y*)g w (K% X%, Koy),
s (K™ x, k-8 Yy = (x y)o

as such the random variable
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p has the identity operator on H as its varifance operator. The whole idea can be
explained by the following example:
Example 3. Let r = sné.m he (1, (172)7, (1/3)7, ...) ey, where 2, =
{real number sequence {y,} l1§‘ y,s is finita}, Let x be a zero-mean random variable
taking values in the real number set R and let its variance be 1. The p = xh is a random

variable taking values in £3. The dual space of 23 is 13/2 and 13 is reflexive.

(1) For all z ¢ 245
E((0,2)} = Et(xh, 2)} = ECx(N,2)}
= (h, 2) E{x} = 0.
Hence o 1s zero-mean.
(ii) mru1z.wo53n.
EC(p, 2)(p,W)} = EC(xh,2)(xh,w)} = E{x(N.2)(hw)}
e (h,2)(h,w) Etx?} = (h,z)(h,w)

dgf (Q z, w).
’ Thus Q° 2 = (h,2)h.

(i111) Since the range of QD is 1-dimensional, the possible factor space is the
real set R. Let K* = £3/2 + R be the functional (h,-).
" then K=R - 1'1'/2 = La is defined by the following equation,

(kd,2) = (d, K* 2), for all deR and 2‘23/2'
Sjnce
3 (dy K* 2) = d K* z = d(h,z) = (dh,2),
we have

Kd = dh, for all deR.

3 For all z ¢ 23/2. we have
KK* 2 = K(h,2) = (hy2) h = sz.
Hence, Qa a KX+
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(fv) Furthermore, we have

t t R fort >0
R R(k*Ft) = [ '
e {0y ,fort<t,

for
R(K*FE) = ko (2, ,]
- (k*FC 2 |2¢ ‘3/2}
(nFtz)| ze 2,5}

{j R » for t > 1
(0} , fort<l.
Hence, Et on R is the step function

U(t-]) .{1 » t > 1
0 ,tc<l

(v) a. when E% = 0,
case 1 (t < 1) = Ft =« 0, so F'Kkd = 0;
case 2 (t > 1) = Et = Ip=1l,s0d=0.
Thus FE K d = 0.
b. When FE K d = 0,
case 1 (t<1) = et 0, so Et 4 = 0;
case 2 (t>1) = Fix d = FPanadFinao
However, F* h = (1, (172)7, (1/3)", ... (/)% 0, ...)
+ 0, where 1 < i < ¢,
Hence, d = 0. Thus, E* d = 0.
From a and b, K is a left-miniphase.
(vi) Hy = X (R] = {dh | d ¢ R}
For dq h, dz he Hq, the inner product {s defined as
(d1 h, dz h)Q = d1 dz
(vif) Since o takes values in HQ only, o can be considered as a zero-mean random

variable over HQ with the identity mapping on Ho as its variance. This

statement can be verified easily.
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Note, since the stochastic character of the given random variable, p, was derived
from the scalar random variable, X, it is appropriate that o can be characterized

compietely fn tarms of its representation in the one dimensional RKRS, Ha'

Y. Scattering Qperator : e

Classically in network analysis, nctyork variables, such as voltage and current, ‘f
are assumed to be in Hilbert space. Although the scattering variables are a very
useful tool {n network analysis, the significance of the normalizing impedance
used in their derivation {s not clear. Situations have occurred where we have to
assume that the network variables are defined in Banach space. If the scattering }
variables are to be well defined here, the function of the normalizing impedance i
should be the transformation of network variables defined in Banach space into ‘
elements of a Hilbert space. Theorstically, it is much easier to work with Hilber: ?
space. Therefore, the significance of the normalizing impedance lies in the fact that |
it transforms a problem defined in Banach space intao a Hilbert space problem. In
this section, we will extend the idea of scattering variables to networks with their

voltage and current variables dafined in Banach spaces with the help of the factor-
ization theorems developed in Chapter III.
Thinking of the impedance Z, or the transfer function, as an operator from a

current space to a voltage space, the power V.1 i{s a scalar quanity. Here V denotes

voltage and [ current, and the power equality implies that the voltage plays the
role of a linear functional operating on the current. Thus, Z may naturally be
viewed as a mapping from a current space to its dual, a voltage space. Similarly,
an admittance assumes a dual role mapping voltage to current. In that case, "I" is
a linear functional over the voltage space. What model could be better than a re-
flexive Banach space to fit the structure? Therefore, in this work, the current
and voltage spaces are chosen to be dual reflexive Banach spaces.
Unlike the classical casa, the normalizing impedancs (or admittance) operator is

not invertible, in general. BSesides being positive, causal, Tinear, and bounded,
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we, however, also assume that the normalizing impedance is 1-1. For this class

of operator, we have the following special factorization theorems.
Thm. V.1. Let Z: (B, F) = (B*, F*), where B8 is a reflexive Banach space,

be positive, causal, 1-1, linear and bounded. Let M = 1/2-(Z + Z*); then M is also

positive and furthermore, self-adjoint. Then

i. There ox’lits a Hilbert resolution spaca (H, ) and a left-factorization
of M, Ko: (H. E) = (B%, F¥), such that Ko is left-miniphase.

i1. There exists a Hilbert resolution space (H, g) and a right-factorization
of M, To: (8, F) = (H, E), such that T, is right-miniphase.
Proof: The existance of the left- and right-factorization follows from
Tha. III.2 and Tha. III.3.

Note here that we use the same Hilbert space for left- and right-factor-
{zation. This can be justified from the proofs of Thm.III.2 and Thm.III.3 in
Appendix.

Tho. V.2. Let M be defined as above. If K: (H, E) = (8%, F¥), is a linear
boundad operator such that '

i. K is 1-1..and causal, .

i1. M = K Re,
then there exists a linear bounded operator U: (H, E) - (H, E). such that

8. K®KqU, (Kyis as defined in Thm.V.1.)

b. U is causal and unitary.
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Proof: (i) For all y ¢ H such that Ky ¢ Ko(H],
define Uy = Ko™ K y.
For b ¢ 8, we have
KK*d = KoKo*d ¢ Xo(H].
Hence U is defined over K*(8] which is dense in H.
For all y ¢ K*(B], there exists x ¢ B such that y = K* x and we have
Huyl 13, = 1™ ky (13, = 1K™ K kv x 13,

« |1ko™ Ko Ko* x [[2, = [IKo* x |13,
i (Ko* x, Ko* x),,

* (x, Ko Ko* x)g

= (x, K K* x)g

= (K* x, K* x),

« e x 112 = 1y 13,
Therefore, U is isometric on K*{B]. U can thus be extended over H
isometrically.
1 (1) Similarly, define
Ty=xt% y over Ko*[8].

V is isometric and can be extended over H isometrically.

(111) For all h ¢ H, there exists sequence {xi} in B such that
Ko* xi = h.

This implies
V (Ko* xi) =V h
UV (Ko* xi) =U TV h

and
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However., |

7 (Ko* xq) = K" Ko Ko* xy A

okt oy |

= K* x4 |

Hence |
U T (Ko* x,) = ko™ K Kk x, v
= ko™t ko Ko x,
® Ko* x4 = h.
Therefore, UV h = h and U is an onto mapping. Hence, U is unitary.
(iv) For all h ¢ H, there exists sequence (xi} such that K* xj - h.
We also have, _
Ko U K* x4 = Ko Ko™ K K* xq = Ko Ko™" Ko Ko* xy
= Ko Ko* xi = K K* x{ = X h,

but
o U K* xqy=+Ko U h.
Hence
Ko Uhe=Khforall heH, i.e. KoU =K.
(v) Since Ko U = K, we have
(FE)* ko E¥ U = (F%)* xo U, (Ka is causal)
. (FY*
= (F‘)' X E%, (X is causal)
« (F8)* ko y €°
o (F%)* xo €% U £, (Ko is causal)
Hence,
(P ko et (et u - efu ety - 0.
T™his implies that €5 U - €% U € = 0, since Ko is left-miniphase.

Therefore, U is causal.
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Th.V.3. Let M be defined as above. If T = (8, F) = (H, £) is a linear

bounded operator such that i. T is causal and has dense range.

. MaeT*T

Then there exists W = (K, £) - (H, ) such that

a. T=WTo

b. W is causal and unitary.

Proof: (i)

(11)

(i11)

Define W* y = (To*)"" T* y, for y ¢ T [8].
8y similar argument as in Thm.V.2., W* can be proved to be
isometric on T(B]. Since T(B] is dense in H, W* can be ex-
tended to H isometrically. Also like in Thm.V.2, W* can be
proved to be unitary.
Also by similary argument, it can be proved that
To* W* = T*, Hence T=W To
(F)* Ta* E, W* = (F,)* To* W*, (To* is anti-causal)

. (R

= (F)* T E,, (T* is anti-causal)

= (F)*" to* ¥ E,

= (F)* To* €, W* E,
Hence (Ft)' To* (Et N> - Et N> Et) = Q.
This implies that E, W* - E, W~ E, = 0, since To* is left-
maxiphase.
Therefore, W* is anti-causal, i.e.

V is causal.

[t 1s trivial to show that {f we have a causal and unitary operator U on

~
(H, E) then Ko U is causal and (KU)(KU)* = M. Similarly, if we have a causal
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and unitary operator Won (H, ), then W To is causal and (W To)*(W To) = M. |
The significance of these facts is that they enable us to choose causal i
|
and unitary cperators U & W as desired in order to make the factorization satisfy {
some additional requirements. Unfortunately, the proof of existence and the
r construction of these U & W is currently beyond our reach, even though it is

10 Lith this in wind, et us now con- '

trivial to do so in the classical case.
sider the following network:

ki v
+® g- + - |
- - h - |
e Y oM L4
a. n-port network saries loaded b. optimal matching situation
Figure 1.
In the figure, we have

1. I‘, Ll cB = a nﬂexive Banach space

2. V.. Vg, \I,l c B*

3. Zo. ZL = (B, F) - (B*, F*), linear and bounded.

Although the circuit diagram is as simple as shown in Figure 1, there are
cartain requirements for the diagram to be well defined. They are
; 5 Zc + Zo' is 11
ii. Zo * ZL is 1-1
1. Vg € R(Z° + Zo') n R(Zo + ZL)

From the diagram, we have




¢ VeZ, v L= (2 + ) I, .

Define v, e V‘ -V and Ir = -(I‘ - t1). then we have V.= Z° Ir;

* Define Ir = SI Ii’ whers SI is called the current-basis scattering operator, then

ey = Iy =Ly - (Z,+ ZL)-L (Zy + 24" 1

SI = I8 - (Z°.+ ZL)'L (Z° + Zo*). where I8 is the identity mapping on current

space 8. Now let K and f be the factorizations of 1/2-(Z°+ Zot) as defined in

: Thm.IV.2 and Thm.IV.3, i.e.
M=1/2(Z, +Z)*) =KK* = T* T,
' Define a = K* Ii’ b=T Ir and b = S 3, where S is the so-called sacttering operator.
Then I_=s! 1 implies that
T™bast (M Ra, b =7s! (kR 2. Henca
. serst et 2Tz +z)tx
“C-2TY, K where C =T (k) and ¥, = (2, + 7).
In order to have a causal scattaring operator S, we need a causal C. However,
C =T (xR is not causal in general. By Thm.IV.2 and Thm.IV.3,
C=WTy (Ke*) ™R U, where K , T denota the left- and right-factorization re-
pecetively. Therefore, the requirement for the selection of U & W is to make C
causal.
Similarly, consider the following network, an n-port network parailel loaded by
3 an n-port network. =
il « L . S
- + . 6
Rl ' .‘l.élg Y, 1Y e | Y
a. paralle! loaded n-port : b. optimal matching situation

R o T i AP st A e——




In Figure 2 we have
i. I‘. Ig

ii. Vi. V‘ : 1od
L P AP AR (8*, F*) « (8, F), linear and bounded.

’ I, ¢ B = reflexive Banach space.

As before, certain requirements are needed for the circuit diagram
to make sence. They are
fo Yy + Y s 11 . .
b Yo + Yo' is 1-1
Wi 1. & R(Y° +* Yo') n R(Yo - YL).

9
With the help of the circuit diagram, the following equations can be easily

——

verified.
lg - (Y° + Yo') v, - (Yo + YL) vo
- 11 * Yo V1 - Ia + Yo V‘.
f def
Ir d’ (I‘ - Ii)' Vr = V. - Vi.
Ir s Yo Vr.

def v
vr s S v,. where S° {s the so-called voltage-basis

scattering operator.

sV « (v, + vo)‘L (Y;

-L
= (Y +Y) .

def def
as=Q* Vi. b=p vr. where P, Q are the factor{zations of

1/2 (Yo + Yo') = p* P = QQ* as mentioned in Tm.IV.2 and Thm.IV.3.
def
b : S a, where S {s the scattaring operator.

Se-? (@) e20 ,Q=-0+2PZ Q, where 0 = P @)°"




U —————

S3
¢ Similarly, in order to have a causal S, we must have a causal 0. However,
D=P (Q*)Ray Py (Q,*)'R U', where Py, Qg is the right- and left-factorization
of 1/2'(7° + Yo'). Thgnfon the requirement for the salection of W' &. U' 1s to
¢ make D causal.
One of the most usaful properties of scattaring variables is that they give a
measure of the optimal transducar power gain. To see that this property still
. holds for our generalized scattering operators, let us consider the “power" entering .
the load network. For the series loaded network, '
-R -R
3 t‘--tr+t1--‘r b+ (K*) " a
Va oVt ¥y =2, TR ez (0 Ra,
So the power entering the load is given by:
R ~R R -
< (R a, e () F a)p - (TR b, 2y TR by :
- R <R <R
.\ W0,z Ty - (b, e () a)g
- - L -R
- G k bz Ry, - o, (7t g TR,
T B Rt s Y
« 126, Kh 2 (o), ¢ 17200 20 (00N, )y,
| - 1720, (b2, TR ) - 2t 2, T b, b
| = (@, vt ze e 7)) (07T )y,
- (6 V2 (20 v 2) TR b
< (a Kt krr ()R a)y, - b, (M e Ry
L (‘o .)“ - (b' b)“ i ———— RS
. (‘0 ‘)H by (s q, - .)H =
h — b e i ” o




s (‘o ‘)H - (.o s*S l)u .

= (a8, (I < s*5) a),.

The above equation indicatas that for passive network, i.e. .

-

(I‘. V.)" 2 0,

IH - S* S must be a positive operator. And S* S = IH for a Tossless network.

The sama result can be cbtained for the parallel network.

Now let us study an example.

| P

+
Example 4. . LotP.q:R.p;qandF+a--1.

ii. Let !.p be the current space, Zq be the voltage space. We

have £p cl4.
{i1. Let Ipq
Then we have:

1. For allXx, yec &p, -
(6 Tpg M = ey = Loxyy =
m »
(.V» Im %)

* e
Hence, Ipq Ipq.

5 is 1ti i
2 Ipq positive since

be the embedding mapping from Lp to Lq.

(x. Ipq x) = (x, x) = 121 xiz >0, for all x ¢ &p.

3. Let I“2 denote the embedding mapping from {, to &, and Izq the

embedding mapping from Lz to tq. Then

Ipq = Izq Ip2
This relation can be explained by the faollowing diagram.

L
¥R
Lp Lq
XN
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4. Since we have

Ipz ~=t,~z2 s then

’ Ipz' : Lz-zp* -Lq.
For all x ¢ zp. ye LZ’ we have

(¥s Ipz x)z = (y, x)z

= (x, Y)p

Hence,

Ipz* ysy, forall y ¢ '1' i.e.,

Similarly,

Therefore,
Ipq = Izq lpz = I2q Izq' = Ipz" po'

S. It can easily be proven that Ipz_and Izq are causal and anti-causal in

the usual time structure of the natural numbers. We also have
dof ) -
i 7 (Tpq * Tpg! ™ Tpq
= » = »
Ip2 Ipz IZq IZq g

6. Using the formula derived for scattering operator with T = Ipz and
K= Izq. we have

d -R -L
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g R -L
Ipg Tpa = 2 Inp (Ipg + 207 Iy

E gt -L
!2 2 IpZ (Ipq + ZL) IZq

where I2 is the identity mapping on ‘2'

The transformation involved can better be explained by the following ;

K & K=1
7 g
P \\\\\\* "’/,:1 q

TrIpz L )

diagram:

The scattering operator is meaningful when

Vg € R(Ipq + ZL)f\R(Ipq)

and

Ipq + ZL is 1-1.

Note in this example operator Ipq is not bounded. However, boundedness
has nothing to do with the derivation of the scattering operator. Boundedness
only guarantees the existance of the factorization. Once the factorization
is given, the derivation for the scattering operator follows through accord-

ingly.

VI. Conclusions
The research herein originatad with a discussion between one of the authars

and Professor Harley Flanders concerning the underlying mathematical nature of

; electric networks. [t was observed that in the scattering formalism the st
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energy disapation of a network was given in terms of the norm of the network
variables by

2
£ = [1a]1? - {12

whereas, in the immittance formalisms the energy was given by the inner
product (or functional) equality

Es (V.")

Since a network is fundamentally an energy processing system, one might initially
interprete these equalities as implying that the scattering variables are
naturally defined in a Banach space since only the norm is required to define
their energy, whereas, the immittance variables for which an inner product is
required to define energy, are naturally defined in Hilbert space. In fact,

the situation is just the contrary. The immittance variables may naturally be
extended to Banach space by working simultaneously with B and B* whereas, the
development of the present paper indicates that the scattering variable "live"

in a Hilbert space even when their corresponding immittance variables are de-
fined in Binach space. Indeed, we believe that the primary contribution of
the present work is the observation that certain problems naturally "live" in
Hilbert space. Moreover, they may be transformed into a Hilbert space even
when initially defined in Banach space.
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APPENDIX

e

e

Proof of Tm.I1I1.2:

A. 1.

ii.

ii.

iv.

1.

{ii.

B8y Thm.III.1, there exists a Hilbert space H and a
1inear bounded operator K from H to B* such that
Q=KkK.

Define H -;!-(?)-and K= i]H: H - B*, then

K*: B¥*=8 -+ H. :

(x* b, x)H = (b, K x)8 = (b, K x)8 = (IZ* b, x)H. for all
beB, x ¢H.

Since k* b, K" b e H, so K¥ b = K~ b, for all b ¢ B.
Kk*beKK bsKK b=Qb, forall beB. So
KKk*=KK =Q.

Since H = ?[8] = K*[B]. so K* has dense range. So

K is 1-1.

Define H® = R(K* F%) and let E* be the orthogonal projection
on H. Then (E%)2 = (E%)* = gt.

Since H® becomes R(K*) which is H, as t ~ =, S0
1im €t = Iy (et - I, weakly).

When s < t,

HS = R(K* FS), H® = R(K* F®) and R(F") ¢ R(fY).
Since F* b = FS b + F(s,t) b, for all b ¢ 8, and
for b' ¢ R(FS), b' = FS b', so

FEo' = FP (FS b') + Fls.t) (FFb') = FS b = b,

i.e. b' ¢ R(FY). so R(X* F%) ¢ R(K* F) and
HS = R(K* FS) ¢ R(K* F) = H®. So E® €% = ef g = €%,
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With E defined for all (-=,t), t ¢ R, E can be extended to
8(R) uniquely to be a spectral measure, i.e. a resolution of
identity. :

Since EX[H] = H® = R(k* F%), by definition, so k* is a right-
maxiphase (Def.II.5). So K is a left-miniphase (Thm.lI.8).

Let K: (N, E) = (8%, F*) be another left-miniphase factorization of Q.
Define W on R(X') by ¥ (X" b) = k* b. W is well-defined, for if

?(" b= ?(" a, then

Kk*a=QasR¥ aeX¥ begbekkeb. ButKisi-l, so

K* a = K* b,

e 2 2
|IW K b”“ = | jK* b”" = (K* b, K* b)“
v AN Ay
= (b, K.K* b)B = (b, K K :)B
= (K b, K o)y = 1K bl 1y »

so W is isometric on R(?("). Since R(?('*) is dense in pi'. W can be
For all 2z ¢ R(r), z -?(" X, for some x ¢ 8, hence
o N oy L")
KWZ2=KWK x=sXK*rx=KK x=K2z2. So
N Aoty N
KW=Kover R(K ). So KW = K over H via continuity as

8y the same argument, there exists V: H - ;l', V {sometric, such that

WVs= IH’ since K 1s 1-1. Similarly, VW = I‘;"

{ii. For any b ¢ 8,
F
¥
} ismetrically extanded to :l'
iv.
W extended to H.
v‘
Rv-x. So KWV =K, and hence
k|
P
E'S
r
| lt
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vi. With K W = K, we have

(P K EE W = (FE)* K W = (FE)» X = (Ftyw R B¢

o (Fy* KW ES = (FO)* K EE W ES,
(K, K are causal). So |
ir‘)' K (ES W -€ESWES) z=0 forall z cH, hence
E' (%W -ESWET) z =0, (Kis left-miniphase),

ot

f.e. EX W= ES W ES, so W is causal.

vii. Similarly, V is causal. But W = V* which is anti-causal (Thm.I1.6),

so W is memoryless.

2. Proof of Thm.III.3.
Define T = K*, then T* = K, and define H, = R(T F.). Then

the rest of the proof follows as in Thm.III.2.
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ABSTRACT

A generalization of the classical Nyquist stability criterion to nonlinear and
time-varying systems is obtained via an appropriate homotopy argument in the space
of causal invertible (possibly nonlinear) operators. Although the resulting
stability test is only a sufficient condition in its most general form it reduces
to the classical necessary and sufficient Nyquist criterion for linear time-
variant systems characterized by a transfer function or transfer function matrix.
Although appearently abstract the homotopic nature of the proof proves to be quite
transpearent and, as such, many of the classical sufficient conditions for non-
linear or time-varying systems can be derived from the generalized Nyquist cri-
terion by simply constructing a homotopy (continous deformation) from the given
system to a ststem which is known to satisfy the generalized Nyquist criterion.
This is illustrated via a simple derivation of the Circle criterion as a corollary
to the generalized Nyquist criterion.
INTRODUCTION

When one discusses alternatives in multivariable control the classical debate
between the advocates of frequency and time domain techniques usually comes to the
fore. The former is highly intuitive but restricted to linear time-invariant sys-
tems whereas the latter is amenable to efficient computational procedures and is
readily extendable to nonlinear and time-varying systems. A third alternative is
the operator theoretic approach wherein the system is modeled by an operator on
Hilbert space. In the view of the author such an approach to the control problem
achieves the best of both the time and frequency domain techniques. Since the
operator theoretic model is defined in the time domain the resultant control tech-
niques often hold for nonlinear and time-varying systems. On the other hand, oper-
ator theoretic techniques are formally quite similar to the operational calculus
associated with the frequency domain. As such, the intuitive character of fre-

quency domain control theory often carries over to the operator theoretic approach.

*This research supported in part by AFOSR Grant 74-2631.
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The purpose of the present paper is to illustrate the potential of the oper-
ator theoretic approach to multivariable control via the derivation of a general- ;
ized Nyquist criterion which is applicable to nonlinear and time-varying systems
modeled by finite gain operators on Hilbert space. Although only a sufficient
condition, in general, the technique reduces to the classical necessary and
sifficient Nyquist criterion for linear time-invariant multivariable systems]'2
and it appears to be "tight" in the general case.

3 for

Although the derivation holds in an abstract Hilbert Resolution Space
the sake of brevity the present discussion will be restricted to the case of
sysfems defined on the space Lg composed of n-vectors of square integrable funct-
ions. For this space we define the norm '

1. [1£112 = [ f(q)tf(q) da

and a family of truncation operators Pt:Lg —— Lg by

2. (P%) (a) = {fé“) i
q >

An operator T:Lg RS Lg is said to have finite gain] if there exist constants M
and N such that

3. [ITEI] < MIIf]] + N

for all f in Lg. In some sence the constant M plays the role of a norm for the non-
linear operator T. Of course, for linear operators M may be taken to be the

norm of T with N = 0 in which case T has finite gain if and only if it is bounded.
In the nonlinear case if an operator has a finite Lischitz constant then it is al-
so a finite gain operator though many finite gain operators do not admit Lip-

3

schitz constants.

We say that an operator T:Lg c—— Lg is causa]3 if

4. ptr = ptrpt
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3 that the causal operators are closed under oper-

for all t. It is easily shown
ator addition and multiplication and limits taken in the topology defined by the

gain constants M and N. Unfortunately, they are not closed under the operation of !
operator inversion. A classical example of this is the unit delay whose inverse

is a predictor. Indeed, the question of determining whether or not T'] is causal ﬁ
from the properties of T is completely equivalent to the question of determining
whether or not a feedback system is stable from the properties of jts open loop
gain1’3’4’5’6. As such, the following discussion of the generalized Nyquist cri-
terion will be formulated in terms of the problem of determining whether or not the
inverse of a causal operator is causal, the solution to the feedback system sta-
bility problem being obtained by applying these results to the return difference

operator.3

THE NYQUIST CRITERION
The classical Nyquist criterion is usually formulated in terms of the degree
of the system frequency response. For such frequency responses, however, their

7,8 and hence we formu-

degree is simply a representation of their homotopy class
late the present discussion in terms of homotopic operators. In particular, we
say that 9perators T° and T] are homotopic in the space of causal invertible

operators*, C(0), if there exists a continous operator valued function T:I C(0)

mapping the interval [0,1] to the group of causal invertible operators such
that T(0) = To and T(1) = T]. Our main theorem now may be stated as:
THEQOREM: Let TO and T] be fininte gain operators which are

homotopic in C(0). Then if To has a causal inverse so does T,.

The proof is based on the following lemma usually known as the small gain the-

orem]’3.

*Both the operators and their inverses are assumed to be finite gain but the
inverses need not be causal.
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Lemma: Let T be finite gain causal operator for which M < 1. Then, if the oper-
ator (1 + T) has a finite gain inverse, the inverse is causal.

A proof of the lemma appears in reference 1 and will not be repeated here.

Proof of the Theorem: Let T be a homotopy from To to T] and assume that T(to) has

a causal inverse. Now let [t - t | < e and write
5. T(t) = T(tg) + (T(6)-T(t)) = [1+ (T(0)-T(e )Tt )" T(¢,)

By hypothesis (T(t:)-T(to))T(l‘.o)'1 is causal and has a gain constant M < 1 if ¢ is
chosen sufficiently small (by continuity and the fact that T(to)" if finite gain).
Moreover,

6. 01+ (TO-T NN TN = 1t )T(1)”!

exists and is finite gain since T(to) is finite gain and T(t) has a finite gain in-

verse by hypothesis. As such, the small gain theorem implies that
-1 -1 =14 -1
7. TE)T = (e [+ (T(R)-T(e NT(E )]

is causal since it is the product of two causal operators. Finally, since the
[0,1] interval is a compact set one can piece together finitely many ¢ ~intervals
1 1

to show that T(])'] = T3

1 is causal, thereby completeing

is causal if T(0)7 = T
the proof.
APPLICATIONS

Intuitively the theorem states that the property of a finite gain causal
operator having a finite gain causal inverse is an invariant of the arcwise
connected8 componeﬁt of C(0) in which the operator lies. To obtain a test for
causal invertibility it therefore suffices to show that a given operator lies in
the same arcwise connected component of C(0) as an operator which is known to ad-
mit a causal inverse. In particular, the following corollary reduces to the
classical Nyquist condition for linear time inveriant multivariable systems.

Corrollary: Let T be finite gain operator which is homotopic to the identity

operator in C(0). Then T has a causal inverse.

e —————
- T
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0f course, the identity in the above corollary could equally well be replaced

by any operator satisfying one of the classical sufficient conditions for causal

1nvertib11ity1‘3: operators satisfying the conditions of the small gain theorem]’3.

monotonic operators3. operators of the form 1 + S where S is strictly causa13’7,
etc. Interestingly, however, each of these classes of operators lie in the
same arcwise connected component as the identity and the fact that they admit
causal inverses is most easily derived from the above corollary rather than con-
versely. Another such class of operators which fall in the same arcwise connected
component as the identity are the causal operators for which zero lies in the un-
bounded component of their resolvant set. Indeed, the proof that such operators
admit causal inverses appearing in reference 9 is almost identical to the proof
of the present theorem but with a restricted class of homotopy. In fact, the pre-
sent theorem is a simple extension of the earlier result though considerably
tighter. In particular, the result of reference 9 is not necessary and sufficient
in the linear time-invariant case and assumes that the operators involved admit
finite Lipschitz constants.

An alternative way of looking at the above theorem is as a perturbation
theorem wherein large purturbations are allowed so Tong as they are continous re-
lative to the operator topology defined by the operator gain. As such, it should

not be surprising that many of the small perturbation results of classical sta-

bility theory follow from the generalized Nyquist criterion. For instance, one
may derive the circle criterion] via a two step homotopy. First, one deforms the
nonlinear term to a linear (lying in the middle of the sector associated with the
nonlinearity) and then one deforms the resultant lTinear system into the identity
operator via the classical Nyquist criterion. Here, a combination of the sectoral

1

bound' and the requirement that the spectrum of the linear part of the system lie

outside of an appropriate disk suffices to assure that the operator lies in C(0) at
every point in the homotopy and hence justifies the application of the Theorem.
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0f course, once this homoptopic point of view is adopted, numerous generalizations
become appearent.
CONCLUSTIONS

The purpose of this short paper has been two-fold. First, we believe that the
generalization of the Nyquist criterion presented may prove to be an extremely
powerful tool of stability theory. Indeed, we conjecture that this single ele-
mentary results subsumes most, if not all, of classical stability theory. Second-
ly, however, we believe that it illustrates the power of operator theoretic tech-
niques in control which have the potential of achieving the best of both the time
and frequency domain worlds. Indeed, such techniques yield natural and intuitive
generalizations of the classical frequency domain concepts without the linearity

and time-invariance restrictions usually associated therewith.
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ABSTRACT

Classically the study of closed loop system stability is approached through fre-
quency domain techniques, e.g. the Nyquist and Hurwitz criteria. In the nonlinear
case frequency response is not well defined; however, one of the authors has re-
cently shown that the spectrum of a nonlinear operator can be used in lieu of the
usual Nyquist plot as a means of generalizing the Nyquist criteria to the nonlinear
case.

Through some perturbation techniques we characterize in this paper the stahility of
nonlinear operators by the more accessible "approximate point spectrum" as
opposed to the entire spectrum.

I. INTRODUCTION

Recently one of the authors demonstrated that the stability of a closed loop
system rests squarely on knowledge of the spectrum of the operator which represents
the open loop gain. (1) The system may be nonlinear, multivariable, and/or time-
varying. For a Tinear operator representing the open loop gain the spectrum and
frequency response coincide, however, computation of the spectrum of a nonlinear
operator is not, in general, a trivial exercise. (1) (2)

This paper shows that knowledge of the more easily computed approximate point

spectrum is adequate to answer the stability question. (3) In reference 1, it is
shown that if the spectrum of the operator (representing the open loop gain in a

unity feedback system) does not encircle "-1" then the system is stable. Essentially,
this is equivalent to the requirement that the component of the resolvant (the
complement of the spectrum) contain the point "-1"--i.e., "-1" is not disconnected
from infinity by the spectrum. [t is shown here that the infinite component of the
resolvant and the infinite component of the complement of the approximate point
spectrum are identical. Thus if the approximate point spectrum of the afore-
mentioned operator does not encircle "-1", then the system is stable.

Finally the set of complex numbers (A = y(w)/x(w)}, where x(w) and y(w) are the
Fourier transforms of the input and output respectively, is shown to contain the
| approximate point spectrum.

*This research supported in part by Air Force Office of Scientific Research Grant
AFOSR 74-2631.
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In some cases this set is very large and can be the whole complex plane. This
objection is offset somewhat by the fact that the spectrum of trivial nonlinear
operators, such as a squarer, may also be very large.

II. THE APPROXIMATE POINT SPECTRUM AND STABILITY

A1l operators map Lg to itself unless otherwise specified. An operator W is causal
if whenever |
x(t) = y(t) t < T; f,g in L} (1)
for some T, then
(Wx) (t) = (Wg)(t) £ <T. (2)
The norm of W, ||w||, is the usual Lipschitz norm. W is stable if it is both
causal and bounded. (4) (5) The spectrum of an operator, W (possibly nonlinear),
is the set of complex numbers A, such that the operator (A - W) does not have a
bounded inverse.* o(W) denotes the spectrum of the operator W. o(W) is a
compact set. The resolvant set of W is p(W) which is the complement of the
spectrum of W in the complex plane. Clearly p(W) is open.

The following is a recent theorem by one of the authors. (1)

THEOREM 1: Let the open loop gain of a (possibly) nonlinear feedback system be ;
represented by a stable unbiased transformation K, mapping L; to itself. Then if ;
the spectrum of K in the algebra of Lipschitz continuous unbiased operators does f
not encircle the point "-1", the feedback system is stable. ?

The theorem says that the closed loop system is stable if "-1" is in the infinite
component of the resolvant. For the case of a single input single output, linear,
time invariant system whose open loop gain is characterized by the frequency
response H(w) the Nyquist plot for Hw) is precisely the spectrum of the open loop
gain. Hence the above theorem coincides with the classical Nyquist test.

Typically the spectrum of a nonlinear operator W is difficult to compute. A .
characterization of stability using the approximate point spectrum offers a more ;
accessible route, at least theoretically. To this end we denote the approximate a

!

point spectrum of the (possibly) nonlinear operator W as =(W). =(W) is the set
of all complex numbers, A, such that for all € > 0, there exists an x # 0, such
that [[(x - W)x[| < e [[x[[. w(W) is a closed set and contains the point
spectrum (the set of complex A, such that there exists x satisfying Wx = ax).
We denote the complement of =(W) by y(W). A complex number, y, is in y(W) if

*The symbol (A - W) where )\ is a scalar is used to denote the operator (Al - W)
where [ is the identity operator.
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there exists an € > 0, such that [[(A - W)x|| > €]|x]||, for all x # 0. In
proving theorems this definition seems to have more utility as in the following
proposition.

|
|
\
|
|
f
!

Proposition: w(W)ec o(W).

Proof: Suppose A £ o(W). We show X £ (W) implying n(W) ¢ o(W). Since A ¢ o(W)
we have () - N)'] exists and is bounded. With this fact consider the norm of x.

Hxl] = 1= W - W] < | - W1 - W] | (3)

Setting ¢ = 1/]|(x - N)'lll, we conclude that
T -W)x|] > e]|x|]. (4)

Thus A £ =(W) as was to be shown.

Since =(W)C o(W) we have p(W) < y(W). vy(W) and o(W) are open sets since they

are the complements of closed sets. As with any set, both are the union of their
connected components. Both contain a unique infinite component. Necessarily, the
infinite component of y(W) contains the infinite component of o(W). A corollary

to the following lemma shows that these infinite components are, in fact, identical.

Lemma 1: Let W be a (possibly) nonlinear operator. Let s be a connected
component of y(W). If Y, contains a point in p(W), then T o(W).

Proof: Essentially we show that each connected component of o(W) coincides with
a connected component of y(W). Let s be a connected component of y(W). Suppose i
a point p is an element of both Yy and p(W). Suppose further that q is any other '
point in s and that ¢ is a path connecting the points p and q.

Since p is in the resolvant, (p - W)'] exists and is bounded. The task is to show
that (q - w)" exists implying Y.< o(W). Combining this fact with the above pro- 9
position, we will have every connected component of p(W) coinciding with some

connected component of y(W).

R ——

The idea of the proof is to use the definition of y(W) and the compactness of the
path, ¢, to find an e-ball about the point p, such that for any \ in the e-ball,
(n - w)" exists and is bounded. It turns out that the e-ball depends only on a
single constant. Thus a finite number of e-balls can be pjeced together along
the path, 2, so that the arbitrary point q is in the resolvant. The details now
follow.

| e e o a1 A s




B s o RS — ﬂ
75
By definition, for any A in Yar there exists an m > 0, such that
=W x[] > m[x]| (5)
for all x in Lg. We can choose my continuously by taking *
m, = sup{m,} (6)

where the sup is taken over all my satisfying the above inequality. This modifies
the inequality to |

[T = Wx[ | > my | {x]]. (7)

Since the path 2 is compact, ﬁ% achieves its minimum for some A, in ¢. Define m =
m, > 0. Thus for all A in ¢ we conclude

A
o
[T = W)x]] > mf|x]]. (8)
Consequently if A is in & and (A - w)“ exists, then
o= < m, (9)

It remains to show that (A - N)'1 exists for all A in ¢. Define Sm(p) =
{x/|x - p| <m} to be an m-ball about the point p. Let  be in S _(p), then

=W = (A =p)+(p-W)=((a-p)p-W"+NG-N. (10
This factorization is valid since (p - w)“ exists and s bounded. The norm
1= p)(p =W < x=p] e - W <mCi/m) = 1. (1)

By the contraction mapping theorem
CEDICER SRR

exists and is bounded. (6) Since (p - N)°] exists and is bounded, the same is
true of (1 - W)™' for all x in S_(p).

All P, in ¢, such that (p - H)" exists and is bounded can be enclosed by an
e-ball, § (p ), where ¢ depends only on m, which depends on the path t. Piecing
a finite number of e-balls together we conclude (q - w) exists and is bounded.
Since y(W) is open, each component of y(W) is open. Thus for any point q in Yy
there exists a path and a number m = m(2), such that every point in vy 18 in p(W).

Thus the theorem is proved.

Corollary 1: The infinite components of p(W) and y(W) are identical.
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Corollary 2: o(W) is the union of some subset of the set of connected components
of y(W).

Proof: Pick all components of y(W) which contain a point in o(W). By the above
lemma, their components are contained in p(W). By the previous proposition the
result follows.

Corollary 3: Let W be a bounded operator. If y(W) has only one component, then
a(W) = =(W).

Proof: Since W is bounded y(W) and p(W) contain identical infinite components.
Therefore since there is only one component of y(W), o(W) = y(W) implying that
a(W) = w(W).

With these statements as a base, a modified general Nyquist criteria follows.

THEQREM 2: Let the open loop gain of a (possibly) nonlinear feedback system be
represented by a stable unbiased transformation, W, mapping Lg to itself. Then

if the approximate point spectrum of K in the algebra of Lipschitz continuous
unbiased operators does not encircle the point "-1", the feedback system is stable.

Proof: We remark that “not encircle -1" is equivalent to "-1" in the infinite
component of the resolvant. Thus "-1" is in the infinite component of y(W).
Therefore if the approximate point spectrum does not encircle “-1" neither does
a(W) and conversely.

III. A COVERING OF THE APPROXIMATE POINT SPECTRUM

For a linear single input single output operator, H, the frequency response ﬁ(m) =
;(w)/;(m), where ;(m) and x(w) are the Fourier transforms of the output and input
functions respectively, is the spectrum. In the nonlinear case, it appears that
the relevent object to study is in fact {§(m)/i(w)} since it offers a covering of
the approximate point spectrum even though ﬁ(m) is undefined.

Let W be a (possibly) nonlinear operator. Suppose Wx = y. Define S(W) = Closure
{A]2 = y(w)/x(w) where y(w) and x(w) are Fourier transforms}. With these assump-
tions we have the following lemma.

Lemma ?;: n(W) S S(W).

Proof: Suppose A ¢ S(W), then since S(W) is a closed set

n-i(&%[ . & (12)

x(m

for all x # 0, for all w, and some ¢ > 0. Now by Parsevals equality




I
|
i
\
i

77
1= Wxl 12 = [ax(0) - y(@) |2 (13)
:ﬁ?m - ¥() 12 du (14)
;ﬁ; : ;L&)llzli(m)lzdu (15)
< a - Ylua)2 m(u)lzdu (16)

x(mo -e)

by the mean value theorem. It now follows that (16) is greater than ezllxll. The
lemma is true.

Suppose Wx = xz. Utilizing the global inverse function theorem, one can show the
spectrum of W to be the whole complex plane. (7) (8) Thus one could expect the
set S(W) to be large. For appropriately restricted weakly additive operators ;(w)
is well defined in terms of ;(w) and knowledge of the operator W.

IV. CONCLUSIONS

Apparently the approximate point spectrum is the interesting object of study in
the stability question. Moreover knowledge of =(W) offers a sufficient condition
for when o(W) = n(W). Perhaps a variation will offer a necessary and sufficient

condition. Lastly the set S(W) covers =(W). The set S(W) is intuitively satisfying

since it can be interpreted as the frequency gain or frequency response of the
system.
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A NEW CHARACTERIZATION OF THE NYQUIST STABILITY CRITERION*

R. DECARLO & R. SAEKS

ABSTRACT

The usual proof of the Nyquist Theorem depends heavily on
the agrument principle. The argument supplies unneeded
information in that it counts the number of encirclements
of "-1". Stability of a system requires an encirclement
or a no-encirclement test. Using homotopy theory, this
paper offers a more intuitive approach. We believe this
approach will lead to practical generalizations. For ex-
ample, systems characterized by several complex variables
such as multi deminsional digital filters.

[. INTRODUCTION
This paper introduces a characterization of the Nyquist criterion using
homotopy theory, a branch of algebraic topology. The authors emphasize
the intuition and motivation for this approach. The hope is to aid
interested readers to further extend and apply these ideas. In this
vein, proofs are omitted so as to simplify the presentation. Details
can be found in the references. With this philosophy in mind, let us
define the type of system we will be discussing.
As illustrated in Figure 1, let é(s) be a rational function in the com-
plex variable s (bounded at s = =**) representing the open loop gain of
scalar single loop feedback system. The closed loop system has transfer
function ﬁ(s) = §(s)/g1+§(s)]. The closed loop system is stable if and
only if all poles of h(s) are in the open left half plane denotad by £_
(where ¢ will denote the entire complex plane).
The Nyquist Criterion states that the closed loop system is stable if and
only if the Nyquist plot of §(s) (i.e. the image of the Nyquist contour
under the map é(o)) does not encircle nor pass through "-1". If the
Nyquist plot passes through "-1" there is a pole on the imaginary axis;
if the Nyquist plot encircles "-]“,othere is a pole in the open right
half plane, which we will denote by g, (¢+ will denote the closed right

**This boundedness condition can be dispensed with & is added only to ease
the exposition.

*Supported in part by AFOSR Grant 74-2631d
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half plane). The following section constructs the required machinery
of homotopy theory

“'/"-—\ i A\
A n S Agn M
C&&b) ‘fﬂ‘:> - v§“*3 f‘jr—-—f? ¥ C3)
-
|
-
Figure 1

IT. MATHEMATICAL PRELIMINARIES & BACKGROUND
Basic to homotopy theory is the concept of a path. A path or a curve in

the complex plane is a continuous function of bounded variation (2) vy :[0,1]-7
y is a closed path if y(0) = y(1).

closed path and has no self intersections.
called the trace of y and is denoted by {y}.

y is a simple closed path if y is a
The image of I = [0,1] under vy is

Figure 2
Two closed curves Yo and y; are homotopic in £ if there exists a continuous
function r:IxI+¢ such that:
Intuitively, Yo is homotopic to Y if one can continuously deform Yo into

Y1 Moreover, it is easily shown that the homotopy relation is an equiva-
lence relation. (4) (5)

Another important property of a closed curve is its index or degree. The
index (2) is of closed curve, with respect to a point "a" not in {y} is:"

nlvia) = g f (z-a)7' dz
Y
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This integral measures the net increase in angle that the ray r of Figure 3
accumulates as its tip traverses the trace of vy.

:Figure 3
Intuition for the approach stems in part from the observation that n(y;-1) = 0
if and only if y is homotopic to a point in - {-1} (cf. prop. 5.4, ref. 2).
We will henceforth refer to such a vy as being homotopically trivial. Conversely,

y encircles "-1" if and only if y cannotbe continuously deformed to a point
in - {-1}. These ideas appear to indicate that the Nyquist encirclement
condition is fundamentally a homotopy concept. The tuition is further
reenfarced when one formulates the Nyguist criterion on the Riemann surface
(2) (8) associated with a map, %(s). Assuming ?(s) is analytic on ¢ _ and
bounded at s==, the image of simply connected regions in ¢, are simply
connected in €. To illustrate the point, let Figure 4-a be the image of
the right half plane under f(s). The region is not simply connected.
Figure 4-b shows the ‘“same region” as it might appear on an appropriate
Riemann surface. Here the region is simply connected.

/'—\\

/ \

<

Figure 4

e *suiont dewicted ‘n wre 4 are the Nyaquist plots of
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%(s) in £ and on the Riemann surface. On the Riemann surface the Nyquist

test becomes an obvious triviality. In ¢ it is mathematically more delicate.
Qur setting uses homotopy theory, a branch of algebraic topology, to establish
a topologically invariant relationship between a metric space, X, and an
algebraic group called the fundamental group of X, denoted by n(X). The
relationship is topologically invariant in that homeomorphic spaces have
isomorphic fundamental groups.

Specifically, the fundamental group is a set of equivalence classes of

closed curves. Each equivalence class consists of a set of curves homotopically
equivalent. The group operation is "concatenation" of curves.

For example, the fundamental group of ¢ consists of one element, ig. the
identity, since all closed curves are homotopic to zero. If X =¢ - (-1},
then »(X) has a countable number of elements: ix (the identity) equal to

the equivaience class of all closed curves not encircling "-1" and the
remaining elements, Mp (n=1,2, 3...) consisting of the equivalence class
of all closed curves encircling "-1", n times. Moreover, My concatenated
with My is equal to the element IR

Now let X and Y be metric spaces. Let f: X+Y be locally homeomorphic. In
particular, assume that for each point y in Y there exists an open neighborhaod
G of y such that each connected component of f'](G) is homeomorphic to

G under the map f. Under this condition X is said to be a covering space

of Y. (2) (4) Also let =(X) and =(Y) be the fundamental groups associated
with X and Y respectively. With these assumptions, f effects a group

isomorphism (i.e. a one to one into mapping preserving group operations)
b¢ between 7(X) and a subgroup of ~(Y) as in the following diagram (4) (5)




i
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F is the functor which establishes the relationship between a topological

space and its fundamental group. Finally let us distinguish between a

critical point and a critical value. A point z, in £ is a critical 5

point of a differentiable function f if f'(zo) = 0. A critical value of f

f is any point w = f(zo) whenever z, is a critical point.

Now suppose f:Z - £ is a rational function whose set of poles is P = 1

{P], Py Pn}. Let Q = {q], o qm} be the set of all points in £ such

that f(qi) is a critical value of f. Note that there may be qi‘s which

are not critical points. To see this consider g(z) -zz(z~a). g (0) =0

implies "0" is a critical vlue of g, but g(a) = 0 with g‘(a) # O.

Finally, define T = (t.|t, - f7'(-1), i-1, ..., n}. Note also that since

f is a rational function, P, Q and T are finite sets. Define X = ¢ - |

{PuQuT} and define Y = f(X).

Lemma 1: Under the above hypothesis, X is a covering space of Y. This

leads to the following corollary.

Corollary: The fundamental group n(X) of X is isomorphic to a subgroup

N of m(Y).

This corollary says that a closed curve in X is homotopically trivial.
IIT. THE SCALAR CASE

Let g(s) be as described in the introduction. Appropriately define the

sets P, Q, and T and the spaces X and Y so that X is a covering space

of Y. Also as per reference (10) and Figure 6, construct the ugly

Nyquist contour, XR* and the usual Myquist contour, ', where r:I = £ v {=}

> Lo b i [ >
—h S e, Pray X
4 < N’ \.J - . l- -9
:&D ;1 ,_——"’J?\ ,/\
e 1 ¥ S
T | Jon
; > - AR T O - /
L < ‘\_/1 b < ’/ = \ /
Xy // /
i 3 _*
,, =
! o \L(’//
I
Figure 6-(a) Figure 6-(b)




X indicates a point of P; & indicates a point of Q

Lemma 2: Under the above assumptions on g and Ag? h! ’s) is stable if and
only if the path gO\R does not encircle "-1". (10)

At this point we must establish this lemma's connection with the classical
Nyquist criterion. To this end we compare the information of the Nyquist
plot, éor with the "ugly" Nyquist plot, é?*R'

Lemma 3: Let n be the number of poles of g in £ , then

e
E%T Sﬂ (z-l)']dz = %FT § (z-])'1dz +n

90
These three lemmas give rise to the fo]10w1ng theorem.
Theorem 1: Let g(s) be as above. Then h(s) is stable if and only if the
Nyquist plot of g(s) does not pass through "-1" ang encircles "-1" exactly
n times where n is the number of poles of g(s) in 2,-

IV. MATRIX CASE

Let the entries of an nxn matrix é(s) be rational functions in the compiex
variable s. Suppose é(s) characterizes the open loop gain of the single
loop feedback system of Figure 7.

. , 2N » . i P
f‘/;(;a.\ > G : 7 9 (A

Figure 7
Q(s) and 9(5) are n vectors whose entries are also rational functions of
s which represent the input and output of the system respectively.
This article assumes each entry of é(s) is tounded at X = = . Thus é(s)

as a mapping, é(-):¢ > znxn’ is analytic on £ except at a finite number o

points, the poles of its eatries.

For Figure 7 to ba well defined we require that det [I+’(s 1=0 Tihwus there
exists a closed Toop convolution operator, i, such that y = H*x. More-
over the Laplace transform of H, H(s) satisfied

A(s) = G(s)(1+6(s)1""
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For this system to be stable, ﬁ(s) must have all its poles in £_ and
have all its entries bounded at s = =,
Under the assumptions on G(s), the following factorization is valid:

G(s) = N(s)0™'(s)
where N(s) and D(s) are right co-prime, polynomial matrices in s with
det{D(s)]#0. Moreover 50 is a pole of é(s) if and only if it is a zero
of det[0(s)]. (9)
Dosoer and Schulman (3) have shown that the close loop operator H is
stable if and only if det[N(s)+D(s)]#0 for s in £_and det[I+G(=)]#0.
Using this fact, we state and prove the following:
Theorem 2: H is stable if and only if (1) the Nyquist piot of det[N(s)+
D(s)] does not encircle nor pass through "0, and (2) det[[+é( J1#0. (10)
Observe that if one assumes the open loop gain to be stable (i.e. é(s)
has all poles in £ ) then det[I+G(s)] in the above theorem. This follows
since for all s in ¢, det[N(s)+D(s)]= det[I+é(s)] det[D(s)] with det[D(s)I#0.
Thus in € _ det[N(s)+D(s)] has a zero .if and only if det[I+é(s)] has a zero.
Finally, it is worthwhile to point out the relationship between the above
formulated multivariable Nyquist criterion and that formulated by’ Bareman
and Katzne]son.ﬁ For this purpose we let Aj(iw); j=1, ..., n; denote the n
eigenvalues of g(iw). In general parameterization of these function by iw
is not uniquely determined but one can always formulate sucnh a function.
Moreover these functions are piecewise analytic and can be concatonated
together in such a way as to form a closed curv2 which Barman and Katzel-
son term the Nyquist plot of é(s).
Now, since

det[I + G(iw)] = E T+ 4y (]
j=

and the degrees of a product is the sum of the degrees of the indjvidual
factors and also equals the degree of the cancatonation of the factors, the
degree of the Barman and Katznelson plot with respect to "-1" coincides
with the degree of our plot with respect to "0". As such, even though
the two plots are different their degrees coincide and hence either can
be used for a stability test.
Acknowledgement: The authors would like to acknowledge the contribution
of Or. John Murray (Dept..of Mathematics, Texas Tech University) whose
continuous flow of counter examples shaped the ideas preasented herein.
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THE "FOURIER" TRANSFORM OF A RESOLUTION SPACE AND A THEOREM OF MASANI*

R. A. DeCarlo, R. Saeks, and M. Strauss
Texas Tech University
Lubbock, Texas

ABSTRACT

Using two classic theorems (one of Mackey and another of Strone) and a
recent result of Masani and Rosenberg, this paper pieces together a generalized
frequency response theory for an abstract Uniform Resolution Space. The
present theory assimilates past’'work as done by Falb, Freedman, Anton, Masani
and Rosenberg, and one of the authors. The results of the paper are not new,
but are merely a rearrangement of subtleties uncovered by the aforementioned
authors. An interesting consequence of this work was that an abstract Uniform
Resolution Space has both a "time transform" and a "frequency transform". Such
a duality is not readily identifiable in an L2 function space since the time
transform, there, is the identity.
INTRODUCTION

Fourier analysis is basic to the design and understanding of physical systems.
The property that convolution in the time domain maps into a product in the fre-
quency domain, yields a theory both practical and aesthetically pleasing. Thismte
provides what is hoped to be a generalized frequency response theory for arbitrary,
closed, linear, time invariant operators on a uniform resolution space. Previous
attempts at providing a general frequency theory have illuminated numerous sub-
tleties, yet still appear inadequate for one reason or another. Interestingly
enough, the mathematics necessary for such a synthesis is well entrenched in the
literature. This paper merely pieces these results together and reinterprets them

in light of the work of Falb, Freedman, Masani, Rosenberg and Saeks.3’9']2’2]

This research supported in part by Air Force Office of Scientific Research Grant
AFOSR 74-2631.
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Classical Fourier analysis consists essentially of two fundamental ideas--
the idea of a "transform" from time to frequency and the property of a time-in-
variant mapping to a product of functions in frequency. We desire a Fourier
representation for time invariant operators defiqed on ;n appropriate space.

Two avenues arise. A traditional approach uses a Fourier-like integral to obtain
the representation.: In an abstract approach, the Fourier representation is a
spectral representation of the abstract operator relative to an appropriate spec-
tral measure. This road is both more general and eliminates the need for a
specific representation of the operator.

Falb, Freedman and Anton3’5 developed a generalization closely paralleling
the classical theory. The formulation considers Hilbert space-valued L2
functions (square integrable relative to the Haar measure), defined over a
locally compact abelian (LCA) group, G, and operators which are characterized
by an L] convolutional weighting function. The theory is highly representation-
dependent and fits awkwardly into the setting of an abstract resolution space.

In fact, the identity and unit delay are not admissable to the theory. The major
advantage is that one obtains an operator-valued Fourier representation.

1,7 use a spectral theoretic vehicle to alleviate the

Masani and Rosenberg1
difficulty of a specific representation of the operator. Moreover, the theory
settles nicely into an abstract setting. Yet, the frequency response is always
scalar-valued, even in the multivariable case, and the concept of a "transform"
is absent.

21

Finally, Saeks® has a Masani-like development whose Fourier representation

assumes values in a suitably restricted class of operators. The advantages are the

compatibility with abstract spaces and an operator-valued frequency response. Yet
still, the concept of a transform is missing and major existence questions are

still present.




The structure of the present theory rests on the classic theorems of

Mackey7 and Stone4 10.

and a recent theorem of Rosenberg and Masani With this
comment, we define the setting.

UNIFORM RESOLUTION SPACE

A resolution space is a paﬁr. (H,E) where H is a Hilbert space and E is a
spectral measure ¢cn an ordered LCA topological group, G. On an ordered LCA group,
a spectral measure determines a resolution of the identity, and conversely. Thus,
it is advantageous to work with the réso]tuion of the identity gt - E([-=,t]),
rather than with the spectral measure E, as illustrated at the end of this section.

As an example, consider thé Hilbert space, L2, together with the truncation
operator, Et, defined as

(ﬁnu)-meqge

0 q>t

or equivalently, the spectral measure, defined via

(E(8)x)(g) = [i(q} qe8

@ qy¢8
for all Borel sets B.

In addition L, admits a group U of shift operators ut, defined as

(Ux)(a) = x(q - t).
Thus, the concept of time invariance is well defined in a classical L2 setting.

In general, a resolution space lacks the concept of time invariance. Such a

property requires an extension of the concept of the L2 “time-shift". A group of

such operators, in general, fails to exist in an arbitrary resolution space.
In particular, we seek a strongly continuous group of unitary operators

(i.e., ut-s = Ut(Us)'] for all t and s in G), such that

ute(s) = €8 + t)ut
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for all t in G and Borel sets B. A resoltuion space, together with such a
groug U of shift operators, Ut. is a Uniform Resolution Space (URS), denoted |
by the triple (H,E,U). g
Underlying each URS is an ordered LCA group, G, wh?ch. for our purposes, is
time. Associated with G is a "character group”, é, which is the group of con-

tinuous homomorphisms from G into the multiplicative group of complex numbers of

magnitude one. Note that G is, in general, not ordered.
In 1ike manner, attached to each URS (e.g., (H,E,U)), defined over G, is a
"dual" character space (H,G,E)*, defined over G. E and U are a spectral measure

and a group of shift operators, respectively, defined via the two equalities

ot - J' 5(7.-:)&(7) teG
and

oY - I alvi-tlE(t) v cG.

Here, (y,-t) denotes the complex number of magnitude one, resulting from the oper-

ation of the character y in 6 acting on -t in G, and where the integral is the

§ ; Lebesque integral. Stone's theorem(4) assures the existence and uniqueness of E
and G.
Oddly, the character space (H,ﬁ,ﬁ) is not a resoltuion space since G is not

ordered. However, (H,ﬁ,é) displays all the resolution space properties which do

not depend on the ordering of G. In fact, by Stone's theorem(6),(7),(12), Uis a
group of shift operators for E, satisfying the imprimitivity equality over G--i.e.,

UE(B) = E(8 + vJUY.

*jie have adopted the ordering (H,U,E) begause via Stone's Theorem, E and U contgin
the same information. Moreover, U and E do. Thus, (H,U,E) rather than (H,E,U).
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For our purposes, the character group plays the role of frequency.

Now, the physical properties of causality, memorylessness, time invariance,

etcetra, have precise descriptions in the uniform resolution space structure.

In particular, for bounded operators, T, on (H,E,U), causality is equivalent to

€7 = e'7ets 12420, anticausality, to E,T = E,TE,*; memorylessness, to E'T = TE® ,

which, in turn, is equiva]ent to T, being both causal and anticausal. Since

memorylessness is a symmetric concept, it has an analog in the character space,

(H,ﬂ,é), whereas causality does not. Because of this, we say a bounded operator,

T, is time invariant if E(B)T = TE(B) for all Borel sets B of G. Via Stone's

theorem, this is equivalent to UtT = TUt for all t in G. Clearly, we emphasize

the character space in the definition of time invariance. é
In the case of unbounded operators, (e.g., the derivative operator), T is

TE

causal if E'T g:EtTEt**; T is anticausal if EtT i T is memoryless if

s
EtT g:TEt; and, finally, although somewhat non-intuitively, T is time invariant
if E(BYTg;'TE(B) for all Borel sets B in é, where, again, we emphasize the

definition in the character space. For unbounded operators, Stone's theorem, in

general, does not yeild an equivalent statement (such as it = TUt) in the original

resoltuion space. However, for the case of linear, single-valued, closed oper-
ators with domain dense in H, then utt = Tut if and only if EtTf§1Et.9’]o The
fundamental role of the character space becomes more clear in the following section. ;

EQUIVALENT SPACES ;

In this section, Mackey's theorem verifies an equivalence between an abstract

URS, (H,E,U) and a function space, (LZ(G,K), XB,ot). Now, the relevant infor-

—_——

mation contained in (H,E,U) is also contained in (H,ﬁ.é). Thus, applying Mackey's

theorem to (H,E,U) (under the guise of (H,G,E)). another equivalence to

(Lz(é,K), oY, xg) exists. Furthermore, (LZ(G,K). XB’ ot) and (Lz(é,K), oY, Xé) have

and affinity via Stone's theorem.

€, = E((t, «]) = 1 - €%,

**for an uynboundad operator, T, on,a resolution space, (H,E,U), the domain tr
is smaller than the do-gain of TE". As such, the containments indicate th:: y
where the demains. of E'T and TEC coincide, then ECT = TEL, ¥

k 3 S A S — §
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After numerous references throughout this development to the above authors,
we, at last, precisely state their results. Hopefully, this will facilitate
understanding of the maps between the various spaces, hinted to in the above
paragraph. The following is a statement of Stone's theorem for LCA groups.4’M
Suppose G is an LCA group and é. its "dual" character group; let (y, -t) be
the complex number of magnitude one, resulting from the operation of y in G on -t
in G; define E(z) as the g-algebra of Borel sets of é(G); finally, let {Utlt in G)
({GYIY in é}) be a strongly cont%nuous group of unitary operators on a complex

Hilbert space, H, onto H. Then, there exists a unique spectral measure, E(t)

(E(+)), for H on £(x), such that all t in G (y in G),

ot - fg(r. )i
or ;

e - f glr. -t)as(e).

\

The initial task, now is to construct an equivalence between two L2 spaces via
this theorem.

Consider the URS, (LZ(G.K). Xgs ot), and the character space, (Lz(é,K),
o', Xé), where G is an LCA group; é, its character group, XB’ the characteristic
function of the Borel set B in L; ot, the classical shift operator (i.é.,
(otf)(q) = f(q - t)*, and, lastly, the measure on the space will be the Haar
measure, m.

Now, the Fourier transform maps LZ(G,K) to Lz(é.K) in such a manner that
XB is taken to the spectral measure on Lz(é.K), whose integral is o'. Similarly,
ot maps to the unitary group on Lz(é,K), whose associated spectral measure is xa.
As such, (Lz(é,K), o, xé) is the Fourier transform of the character space for

(Ly(6,K), Xg, o).

“Here, (o®|t In G} and (x,|8 in the set of acrel
on B k- shiﬂl sets of G} serve as the strongly

operators and the spectral measure, respectively.

|
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Interpreting this, we have XB completely determining o and Xé, completely
specifying ot. The link between these two spaces and an abstract resolution

space is Mackey's theorem. The statement of his theorem for LCA groups fonows:]9
Let E be a spectral measure on the Borel sets of an LCA group, J, and let
U be a strongly continuous, unitary representation of J, such that

E(B + t)ut = ytg(g)we

for all Borel sets B of J and all t in J; then, there exists a unique Hilbert
space, K, and a unitary transformation, M,

":Hz 6 K,m)

such that

(1) me! - ia ‘for all Borel sets
of J; and

(2) Mt = ot for a1 t in d;
where K is a complex Hilbert space and m, the Haar measure.
For an arbitrary URS, (H,E,U), defined over an LCA group, G, by design,
E and U satisfy the imprimitivity equality. Moreover, the character space,
(H,ﬁ,ﬁ), possess the property that E and U satisfy the imprimitivity equah‘ty.20
Finally, it is clear that (LZ(G,K), XB’ ot) and (Lz(é,K), oY, Xé) satisfy the
hypothesis of the theorem. Therefore, by blending Mackey's and Stone's theorem,
the following commutative diagram results:

(. € (0), ¥ (€))
M 1

(L2680, xg. &%) ety liy(5.K), oY, x3).
Figure 1

Remarkably, the diagram reveals that an arbitrary URS is equivalent, under a

memoryless, time invariant, unitary transformation--a uniform resolution space

insomorphism, to an L2 space. Distinctions among the spaces for a fixed G,

**This is the imprimitivity equality.

P R - . - _J
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therefore, depend only on the cardinality of the space, I(.]9 Mixing this

10, gives the desired

equivalence with a recent result of Masani and Rosenberg
structure--i.e., “time invariance" maps to multiplication.
APPLICATION OF THE MASANI-ROSENBERG RESULT

This section begins with the result of the above mentioned authors. The

theorem is not stated in its general 1’orm]0

, but is restricted to a group J, a
Hilbert space, K, and the Haar measure, m.

Let T be a closed, single-valued, linear operator with dense domain on
LZ(J,K.m), such that T commutes with the operation of multiplication by the
characteristic function of a B&rel set--i.e.,

Xg' € Txgs for allBink
(the c-algabra of ail Sorel
sets of J?.

The, there exists a measurable function, T on J, whose values are operators

on K, such that

(T = T . 5 4n 3.

This theorem applies to function space. Thus, to verify the sought after

properties on the abstract URS, we fist apply the Mackey Transforms as in Figure 1,
redrawn below for simplicity.

(M, € (0), U (E)
M M-
(Ly(G.K)+ xge SHE—3(L,(8.K), o7, 53).

Our discussion dwells upon two types of operators in the abstract URS, memory-
less operators and time invariant. First, we consider the time invariant case.
Let T be a closed, linear, single-valued, time invariant operator on '

(H,E(U), U(E)). Recall that T is time invariant if E(B)T < TE(B). Under the

— o ————————— e

‘98 s
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Mackey Transform, ﬁ (which we term the Mackey frequency transform), we have an

equivlent statement in (Lz(é.K). o', XB), as follows:
X € Tie»
where Tﬁ is the image of T under the M transformation. ‘- Clearly, the conditions

of the Masani-Rosenberg theorem are satisfied. Thus, there exists a mapping, .

f:é+K. such thaf

(Th)(y) = T(y)nly)

for all v in G and h in Lz(é.x). This says that time invariant, closed, linear,
single-valued operators on an abstract URS are, as hoped, multiplications in
the “frequency domain“--i.e., in (Lz.(é,K).aY. Xg).

Now, let T be a memoryless, linear, closed, single-valued operator on
(H,E,U). Recall that T is memoryless if EtT = TEL. Thus, by reasoning similar
to the time invariant case, the image of T under the Mackey-time transform, M,

commutes with XB in (LZ(G,K). X t). Thus, it is equivalent to a multipli-

B,O
cation by the Masani-Rosenberg theorem.

This structure, then, shows that certain operators on an abstract URS have
the "right" properties. It is interesting to note that there is a duality in-
herent in this formulation. The presence of a Mackey "time-transform” and a
corresponding "frequency-transform" is apparently necessary for the cohesive-
ness of the theory.

CONCLUSIONS

The above ideas assimilate past theories in a number of ways. The theory
generalizes the Falb-Freedman-Anton work because of the abstract setting and
because it is valid for a larger class of operators. Clearly, there is no re-
striction s scalar-valued frequency responses as in (9) and (13). Moreover, it

21

circumvents the existence questions associated with Saeks' work. In fact, as

.I T e == ——




S e TN

99

in (21), given appropriate conditions, a multiplication on a function space can
be viewed as an integral .over the spectral measure, defined via multiplication
by X, 1.e. )

T =/ T(a)ax(w).
Hence, the pre-image of T under the Mackey frequency transform in (H,E,U) takes

the form
T =/ T(v)di(y),

as was specified in (21).

In a private conversation with one of the authors, Desoer raised a question
about the fact that differential operators satisfied the definition of memory-
lessness in an abstract setting. The question caused some doubt in our minds as
to the appropriateness of the definition. This note gives a parital answer, in
that closed, memoryless operators are multiplications. Hence, the apparent

pathology noted by Desoer can only arise in the case of nonclosed operators.
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CHAPTER I

INTRODUCTION

One technique which has been developed in recent
years for the operator theoretic study of systems is the
use of resolution space [(l]. The basic motivation behind
the development of resolution space was to overcome the
impossibility of defining time-based concepts such as
causality in the Hilbert and Banach spaces which are the
setting for classical operator theory.

Resolution space techniques have been very successful
in achieving the goal of including time-based concepts in
cperator theoretic systems theory, but the concept of time
which has been used is classical in nature. It has been
known since the early part of this century that an accurate
model of the physical universe must be basgp on the concept
that space and time are intimately connected. This is the
central thesis of the theory of relativity formulated by
Einstein (2]. Classical resolution space technigues ignore
this connection between space and time, and thus, it might
be suspected that an extension of the resolution space
concept to include the constraints posed by the theory of
relativity could offer new insights.

Due to the difficulty of merging the operator theory

required by resolution space and the theory of differenti-
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able hnnifolds required by general relativity, the relativ-
istic resolution space theory is developed only for the case
comparable to the classical resolution space development
based on Hilbert spaces such as H = Lz(G,K.u). the Hilbert
space of functions defined on an ordered, locally compact,
abelian group G which take values in a Hilbert space K, and ;
which are square integrable relative to a Borel measure u. |
In H, we can define a spectral measure E by multiplication

by the characteristic function
1.1. [E(A) £) (s) = xh(s)f(s)

for each Borel set A. Given the spectral measure E, we can

define a resolution of the identity by

1.2. et

= Ef»,t), t € G.
In this case, E® reduces to a family of truncation operators

f(s)

s <t
B (ES£) (s) =
0 i1 8 > t

We also have a resolution of the identity E, defined by

G0 T E,L = 1-E".

t

The pair (H,E) is the classical L, resolution space in which

the resolution of the identity EY allows the introduction of
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the desired time-based concepts.

We define space-time to be a pair (M,g) where M is a
real, four-dimensional, connected C Hausdorff manifold, and
g is a globally defined c” tensor field of type (0,2) which
is nondegenerate and Lorentzian. Then analogously to the
above definition for classical L, resolution space, we can
define relativistic L2 resolution space to be the pair (H,E)
where H = Lz(M,x,u) is the Hilbert space of functions de-
fined on M with values in a Hilbert space K, and which are
square integrable with respect to a Borel measure u, and E
is a spectral measure defined by multiplication by the

characteristic function
1.5, (E(A)£) (8) = xA(s)f(s)

for each Borel set A.

In order to proceed further, it is necessary to find
some counterpart to the resolution of the identity induced
in the classical case by the spectral measure E. We don't
have a resolution of the identity in the relativistic case
since the manifold M isn't ordered. It is still possible to
parallel the classical resolution space development if we
first define the past and future of any point x in M.
Although some care must be taken to obtain a precise defi-

nition, the past of a point x is essentially the set of all

e L S
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points in M which could have sent a signal in the past
traveling at a speed less than or equal to the speed of
light which could be received by x in the present. Simi-
larly, the future of x is the set of all points in M which
could receive a signal sent by x traveling at a speed less
than the speed of light. Then the family of projections X
is defined by

Y6 EY = E[37(x)]

where J (x) is the past of x, and similarly, the family of

projections Ex is defined by

1.7. E, = E(IY ()]

where J+(x) is the future of x.
In addition to the fact that Ex and Ex don't form

resolutions of the identity, we also have

1.8. EY + E  # I (Since JT(x)U 37(x) # M),
whereas in the classical case

1.9. S+ E, = 1.

The lack of an order on M, and the noncomplementary nature
of E* and Ex combine to make the relativistic definitions of
concepts such as causality and strict causality more com-

plicated, and definitions which were equivalent in the




classical case are no longer equivalent in the relativistic
case. It also turns out that strictly causal, strictly
anticausal, and memoryless operators are no longer enough
for decomposition of an arbitrary operator, and the totally
new concept of a spacelikel operator must be introduced. The
increased complexity of the relativistic case also prevents
several of the classical theorems from carrying over into
the relativistic setting.

The most familiar space-~-time is the Minkowski space-time
of special relativity ([2],[3],[4]). Minkowski space-time
is the manifold r4 with a flat Lorentz metric g. If x =
(xl,xz,x3,x4) and ¢y = (yl,yz,y3y4) are two points in Min-

kowski space-time, then

1.10. g(x,y) = X Y] +* Xo¥y * Xa¥3 = XY,

A nonzero point x is said to be timelike of g(x,x)<0,
spacelike if g(x,x)>0, and null if g(x,x) = 0. For a given
point x, all the points separated from x by a timelike or
null distance form a hypercone called a lightcone. If we
assume that all timelike distance vectors can be classified
as either future-directed or past-directed, then the light-
cone can be divided into two parts. Points separted from

X by a future-directed timelike distance are said to be in
the future of x and points separated from x by a past-

directed nonspacelike distance are said to be in the past of
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x. All other points are said to lie in the spacelike region

about x. With two spatial dimensions supressed, the light-

i
é
!

{
!

cone of a point x is shown in Figure 1.

In the next chapter, we develop a relativistic reso-
lution space theory for the special case in which the space-
time manifold is a two-dimensional version of Minkowski

' space-time. We first define a special set of lines called
null lines. These lines are essentially the paths along
! which a light ray would travel in our space-time. Then the
| past and future of a null line are defined, and these con-
cepts are used to define a special class of sets called
diamond sets. The diamond sets are shown to form a semi-
ring and this permits them to be used to establish an in-
tegration theory paralleling that used in the classical
resolution space development ((1],([5]).

Next, causal, anticausal, and memoryless operators are
defined, and then shown to have properties similar to those
in the classical development [1l].

After this, strictly causal and strictly anticausal
operators are defined, and once again, the development in
the classical case is paralleled [1].

Finally, the decomposition theorems for an arbitrary
operator are stated and proved (l1]. In order to obtain a
complete decomposition, a new type of operator called

spacelike is introduced. This operator essentially takes
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care of the spacelike region ignored by the causal and

anticausal operators.

The conclusion discusses the problems involved in
extending the two-dimensional theory to a more general case. |
A possible technique for developing a general theory is
indicated, and we state a conjectured property of the

spacelike operators.




110

CHAPTER 11
THE TWO DIMENSIONAL CASE

Qur space-time will be an ordered pair (M,g) where M
is the connected, two-dimensional (one space and one time
coordinate), Hausdorff c” manifold Rlz and g is the usual
flat Lorentz metric used in special relativity, i.e., for

(xl'tl)' (xz.tz)eM.

This space is essentially Rz with an "inner product" defined
by g. Following Penrose [6], a non-zero tangent vector X is
said to be timelike if g(X,X)<0, spacelike if g(X,X)>0, and

1

null if g(X,X) = 0. A C" curve in M is called timelike

(spacelike , null) if the tangent vector to the curve at

each point is timelike (spacelike, null). A curve will be

called non-spacelike if the tangent vector at each point of

the curve is either timelike or null.

We now assume that we can divide the non-spacelike
vectors at each point in M into two groups which we will
call future- and past- directed non-spacelike vectors.
Essentially, a non-spacelike vector is future-directed if it
makes an angle of 45° to 135° with the x-axis, and it is
past-directed if it makes an angle of 225° to 315° with the

Xx-axis.
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Let x = (x,t) be a point of M. The future of x will
be denoted J+(x) and is defined to be the set of all points
of M which can be reached from x by a future-directed time-
like curve, i.e., a curve whose tangent vectors are all
future-directed timelike vectors. J+(x) doesn't include
x. The past of x will be denoted J (x) and is the set of
all points of M which can be reached from x by a past-
directed non-spacelike curve, i.e., a curve in M whose
tangent vectors are all past-directed non-spacelike vec-
tors. J (x) does include x. For an illustration, see
Figure 2.

It is easily seen that the boundaries of the past and
future of a point are lines with slopes of + 1. Since these
lines are so important, they will be given a name, null
lines. The future of a null line is defined to be the set
of all points of M which lie in the future of some point on
the null line. The past of a null line is defined to be the
set of all points of M which lie in the past of some point on
the null line. See Figure 3.

In order to carry through the integration theory in our
space-time setting, we need to define the class of sets

which will be used to partition M. A diamond set will be

defined to be the intersection of the pasts or futures of
any finite set of null lines, the empty set, or the whole

space M. The future (past) of a diamond set is the unicn of

ey o
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the futures (pasts) of all the points contained in the
diamond set and is denoted J' (D)[J”(D)]. All possible
diamond sets are shown in Figure 4.

Our first theorem concerns the suitability of the

diamond sets for performing the integrations.

2.1 THEOREM The diamond sets form a semiring.

Proof: To establish this, we need to show that
i) the intersection of two diamond sets is a diamond
set, and
ii) the set difference of two diamond sets is a dis-
joint union of diamond sets.

i) is immediately obvious from the definition of a
diamond set. ii) is apparent from the diamond sets pictured
in Figure 4 and the fact that all lines bounding the diamond
sets have a slope of + 1.

In order to keep the analogy with the classical case,
we would like to be able to write the past and future of
each diamond set as the past of a single point. With each
null line L, associate two additional points u, and 2.

L L

u, will be called the upper point of L and has the property

L

that the past of Uy is the past of L. The future of Uy will

be the empty set. QL will be called the lower point of L

and has the property that the future of EL is equal to the

future of L. The past of &, is considered to be the empty

L

——— . ————




116

set. We also add two more points, +» and -». The past of

+= and the future of -» are M, and the future of += and the |
past of -» are the empty set. These added points are purely

a notational convenience, and as such, they have no relation

to the points of M. We have not yet been able to discover
whether or not there is a topology which would continuously
extend the metric to include these points. With the inclu-
1 sion of these extra points, it is now possible to write the
past and future of any diamond set as the past and future of
two unique points. For an example, see Figure 5.

Now let LZ(M) be the Hilbert space of L, functions

defined on M. If A is a subset of M, we define the pro-

jecticn
2:2. E(A): LZ(M) = L2(M)
by
£(x), xeA
2.3. E(A)f(x) = e LZ(M)
0 , xgA

| Analogously to the classical case, we define the projections

E¥: Ly(M) * Ly(M) and E,: Ly(M) + Ly(M) for x e M by

2.4. EX = E[37 (%))

and

+
Ex = B[J (x)]).




st = 3%
J (D) = J (x)
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gt = J+(£M)
J (D) = J‘(uL)

Figure S.

gt = 35 (-=)
J7(D) = J (x)

gtm) = sty
J (D) = J‘(uL)
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Let T be an operator on Lz(M). We say T is causal if it

satisfies the two following conditions:

2.6, EXT=£TE v xeM
and
3.7, TE =E TE ¥ xelM

Notice that in the classical case. these two causality
conditions imply each other. This is a result of the fact
the ranges of E' and Ex are complementary subspaces in the
classical case. This is not the case in the relativistic
setting, and both parts of the definition are required to
give a physically desirable interpretation of causality.

We say that T is anticausal if
2.8. E, T=E T Ex ¥VxeM
2.9. TE*=£*TE*Vv x ¢ M.

Let D(u,%) denote a diamond set D with J+(D) = J+(1)
and J°(D) = J (u). We have the following theorem.

2.2 THEOREM T: L, (M) > L,(M) is causal if and only if

2.10. E[D(u,2)]T = E(D(u,2)]T E*
and
.51, T E(D(4,2)] = E,T E[D(u,)]

g St L e — ——————
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for all diamond sets D(u,%).

Proof: Suppose T is causal. Then E“r = g“re“ and TEQ = EzTEz
It is easily seen that E(D(u,2)]E” = (D(u,2)] and E,E(D(u,?)]
= E[D(4,2)]. Then E[D(u,%)]E“T = E(D(u,2)lE*TEY or E(D(«,2)]T
= E(D(«,2) ITE®. Similarly TE(D(u,2)] = E,TE[D(u,2)].

Now suppose TE([D(u,2)] = EETE[D(u,z)] and E[D(u,2)]T =
E(D(u,2) ]TEY for all diamond sets. Let x be any point of M.
Then J¥(x) and J™(x) are diamond sets. It is also easily
seen that J' (3% (x)] = g% (x) and J7(37(x)] = 37(x). From
this, it follows that E*T = E*TE® and TE, = E,TE,,

We obtain a similar theorem for anticausal operators.

2.3 THEOREM: T: LZ(M) -+ Lz(M) is anticausal if and only
if

2.12. TE[D(u,?)] = EYTE[D(u,2)] ,
and
2.13. E[D(4,2)]T = E[D(u,2)]TE,.

An operator T: Lz(M) » Lz(M) is said to be memoryless
if T is both causal and anticausal. We have the following

theorem.
2.4 THEOREM: T is memoryless if and only if

2.14. E(D(u,)]T = TE[D(u,l)]




B -

A et

for every diamonrd set D(u,l).
Proof: First assume T is memoryless. Then T is both causal

i and anticausal. T causal implies that
E[(D(u,2)]T = E[D(u,2)]TE* , and
TE(D(«,2)] = E,TE[D(u,2)],
and T anticausal implies that
E(D(4,2)]T = E[D(u,2)]TE, , and

TE(D(u, 2)1= E“TE[D(u,2)].

Then E[D(u,%)]T = (E(D(u,2))E% = [B(D(u,ﬁ))TEllEu

E(D(u,?))TE(D(u,)),

and

TE[D(u,?)] = EQITE(D(u,l))]

E, [E“TE(D(u,2)))

E(D(u,2))TE(D(u,l)).

Hence E[(D(u,2)]T = TE(D(u,2)] for all diamond sets D(u,).
Now suppose E(D(u,%)]T = TE(D(«,%)] for all diamond
sets D(u,l).

Then E[D(u,R)]T = E[(D(u,)]TE[D(u,)]




and E(D(«,2)]TE* = E[D(u,%))TE[D(u,r))EY

= E[(D(u,2)]TE[D(u,R)] = E[D(u,R)]T.

Similarly EETEID(u,z)] = TE(D(u,t)]. Hence T is causal.
Similarly T is anticausal. Therefore T is memoryless.

The classes of operators which have been defined are as

well-behaved as in the classical case.

2.5 THEOREM: The set of causal (anticausal, memoryless)
bounded linear operators from a Banach algebra with identity
which is closed in the strong operator topology of the
algebra of all linear bounded operators.

Proof: The proof will be presented for the causal case only
since the proof for the anticausal case is very similar, and
the result for the memoryless case follows from the fact
that the intersection of two Banach algebras is also a
Banach algebra.

If T and S are causal, then

g¥rs = (2*re¥)s = E*r(E*s) = E*r(E*se")

= (ErE®)sE*® = E*rSE* .

Similarly, 'I‘SEx = ExTSEx, and

hence ST is causal. If we take the sum of S and T, we have
EX(s+T)= E*s + E*r = E*SE® + E*TE* = E¥(s + TEY, ana

(S + T)Ex = Ex(s + T)Ex‘

Thus S + T is causal. Also, EXI = E*E*1 = E*1E* ana IE,

e b . i inion




= ExIEx’ This proves the identity is causal. Finally, if Ti
is a sequence of causal operators converging strongly to T, :

i.e., lim T.f = Tf for all £, then since E® is bounded,
i+ i
E*Tf = EX[lim T,£] = lim -

= lim E"'riz:"f = EX[1lim 'riE"f] = E*rE*f.

Similarly, TExf = ExTExf for all £f. Hence T is causal.

We have the following theorem for the adjoint of a

causal operator.

2.6 THEOREM: An operator T is causal if and only if T* is

anticausal.

Proof: Suppose T is causal. Then E'r = g¥re®. Taking the

adjoint of both sides, we have (E¥T)* = (E*TE®) * which

reduces to T*E® = E*m*g*, Similarly, ExT* = EzT*Ex' Hence
T* is anticausal. The converse is similar.

Since a memoryless operator, is both causal and anti- ﬂ

|

causal, then so is its adjoint and hence the adjoint of a

memoryless operator is also memoryless. 1
|

At the moment, nothing can be said about the inverse of
a causal operator in the relativistic case. The results

| from the classical case don't carry over, partly because the
ranges of the projections aren't complementary subspaces,

and partly because the condition EXEf = Exg => g%rf =
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& Eng, ¥V x e M, f,geLz(M), is not enough to insure causality

for T in the relativistic case.
We come now to the extension of the integrals of
& triangular truncation to the relativistic setting. It was
for this purpose that the diamond sets were introduced.
Since they form a semiring, they can be used to partition
¥ M so that the integrals can be defined ([5]. The upper
Cauchy integral of an operator valued function f on M is i
defined by

n(p)
2.15. UC [ £(x)4E(x) = lim '{ £(u)ED, (ug,2y)]
peP i=1

where the limit exists in the uniform topology over the net
of all partitions of M into diamond sets Di(ui,zi). Simi-
larly, the lower Cauchy integral is defined by

n(p)
2.16. LC [ £(x)AE(x) = lim § £(L;)E(Dy (u;,2
peP i=1 o

)1.

i

These integrals can also be defined with the measure on the

left, or over a portion of M instead of all M. We can also

define the strong Cauchy integrals SUC/ and SLC/ by taking

the limit in the strong operator topology. We then have the
d following theorem relating causality to these Cauchy inte-

grals.

2.7 THEOREM: The following are equivalent for a linear

bounded operator T.
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i) T is causal.

2.17. {i) uc [ dE(x)TE® = LC [ E,TdE(x) = T.
2.18.  iii) suC [ QE(X)TE* = SLC [ E,TdE(x) = T.

Proof: i) => ii).
If T is causal, then E([D(u,%)]TE® = E[D(u,2)]T and E,TE[D(u, )]
= TE(D(u,?)) for all xeM. Hence for any partition of M into

diamond sets,

3
(]

f1i n{p) D, ( 1]
IT = m E(D, (u,,2.)]]17T
peP i=1 B

1 nfp) (D, ( )]
im E(D, (u,,2 T
peP i=1l R

n(p) ug
lim E[Di(ui,li)]TE
peP i=l

uc [ dE(x)TE".

Similarly, T = LC | E, TdE(x) .

il) => iii).
This follows immediately from the fact that uniform

con. :¢gence implies strong convergence.

iii) => i.

We have SUC [ QE(x)TE® = SLC [ E,TAE(x) = T. Then E’T =

y
®'suc dE(x) TE* = suc[ - EE(X)TE® = SUC[;-(,\AE(x)TE'EY

y)
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2 o X1pY o« gYveY. ; 2
[such (y)dE(x)TE JE?.= E7TE Similarly, TE, = E,TE .
Hence T is causal.

A similar theorem is also true for anticausal operators.

2.8 THOEREM: The following are equivalent for a bounded
linear operator T.

i) T is anticausal.
2.19. ii) UC[E*TAE(x) = LC[dE(x)TE, = T.
2.20.  iii) SUC[E*TdE(x) = SLC[dE(x)TE, = T.

For an integral representation of memoryless operators,
we need to define the diagonal Cauchy integral

n(p)
2.21. C[AE(X)TAE(x) = ;ég iil E[Di(ui,li)]TE[Di(ui,li)]

where the limit is taken in the uniform topology over the
net of all partitions of M into diamond sets. We can also
define the strong diagonal Cauchy integral SCde(x)TdE(x)
by taking the limit in the strong topology. We then have

the following theorem for memoryless operators.
2.9 THEOREM: For a bounded linear operator T, the fol-
lowing are equivalent.

i) T is memoryless.

2.22. ii) C[AE(x)TAE(x) = T.
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2.23. iii) SC/AE(x)TdE(x) = T.

Proof: Similar to the procf of the theorem for causal
operators.

We now define the notion of strict causality. A

bounded linear operator T is said to be strictly causal if

2.24. LC[dE(x)TE" = UC[E,(TAE(x) = T.

A bounded linear operator is said to be strongly strictly

causal if
2.25. SLC[QE(X)TE" = SUC[E TdE(x) = T.

The strictly causal case is different from the causal case
in that strict causality implies strong strict causality
but not conversely (see [l]).

In order to characterize the relationship between the
strictly causal and causal operators, we need to define the

following integrals.

x n(p) ug 21
2.26. S[AE(x)TE" = lim - E(D; (ug 2 )IT(E "-E 7).
peP i=1
g;g n{n)
2.37. TAE(x) = lim (E - E_ )TE[D, (u,,2;)].
x ecPinl 4 M 174

The limit is taken in the uniform topology over the net of
all partitions of M into diamond sets. We can also define

the integrals
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SS/AE(x)TE" and S5[E,T4E(x)

where the 1°' 't is taken in the strong topology. We then

have the following theorem for strictly causal operators.

2.10 THEOREM: A bounded linear operator T is strictly

causal if and only if T is causal and
2.28. S[QE(X)TE" = F[E, TdE(x) .
Proof: First suppose that T is strictly causal.
E'T = E*1cf @E(y)TEY = LCIJ-(x)dE(y)TEy
= LC]J-(x)dE(y)TEyEx = g*TEX.

Similarly TEK = ExTEx‘ Hence T is causal. T being causal

implies that

T = UC[QE(x)TE"

n(p) ug
= 1lim E[Di(ai,ki)]'l‘E

peP i=1

n(p) L. u L
peP i=

n(p) li n(p)
peP i=ml peP i=1

u L
(e - 4

= LC[AE(x)TE* + §[dE(x)TE®

T + S[dE(x)TE".




Hence S[AE(x)TE" = 0. Similarly 5/E TAE(x) = O.

By reversing the above argument, it can be seen that T
causal and S[dE(x)TE" = S/E,TdE(x) = 0 implies that T is
strictly causal.

We have a similar theorem for strongly strictly causal

operators.

2.11 THEOREM: A bounded linear operator T is strongly

strictly causal if and only if T is causal and
2.29. SS[AE(x)TE" = SE[E,TdE(x) = 0.

There are also similar theorems for strictly anticausal

and strongly strictly anticausal operators. We first need

to define the following integrals.

T I - e

s~

x nip) uy A4y
2.30. S/E"TdE(x) = lim (E "-E “ITE(D, (u;,8,)1.
peP i=1

n(p)
2.31. S[AE(x)TE, = lim { E(D, (u; ,R,)IT(E, -B_].
=X peP i=l 11" 1 21 ug

Again, the limit is taken in the uniform topology over the
net of all partitions of M into diamond sets. Then we have
the following theorem which is proved in the same manner as

the corresponding theorem on strictly causal operators.

2.12 THEOREM: A bounded linear operator T is strictly

anticausal if and only if T is anticausal and
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2.32. S[E“TAE(x) = S[dE(x)TE, = 0.

If we take limits in the strong topology, we obtain the

following theorem for strongly strictly anticausal operators.

2.13 THEOREM: A bounded linear operator T is strongly

strictly anticausal if and only if T is anticausal and
2.33. sg/E"TAE(x) = SE[AE(X)TE, = O.

We have the following theorem for the space of strictly
causal (strictly anticausal, strongly strictly causal,

strongly strictly anticausal) operators.

2.14 THEOREM: The space of strictly causal (strictly
anticausal, strongly strictly causal, strongly strictly
anticausal) operators forms a Banach space which is closed
in the uniform operator topology of the space of all bounded
linear operators.

Proof: The proofs in all four cases are similar, so only
the strictly causal case will be presented.

These operators form a Banach space since they are
defined by a linear equation T = LCde(x)TEx. Now suppose
Ti*T where the Ti are strictly causal. Since the Ti are
strictly causal, they are causal, and hence T is causal. We
would now like to show that S/dE(x)TE® = 0.

For any ¢ > 0, choose j such that IITj - T|| < €/2 and a




T §
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partition of M into diamond sets Di(ui,zi), i=1,...,n such

that

2 E(D, (uy,2,)IT (E Lyl € er2.
i=1 TN

n ug li n
Then || { E[D, (u;,2,)IT(E *-E 1) || = IliZEIDi(ui.li)](T-Tj)

u.i 2 n wy li
i 4 JE(D, s Uyt )]Tj(E ig )| < sup|[EID, (uy,2))]
& i=] i i 2

(-1 (5 *-2*4) || + syl |B(D; (u; 21Ty (E T-E D[] < /2 +

(E

€/2 = ¢. So the partial sums for S[dE(x)'rEx converge to
zero. Similarly, S[E TdE(x) = 0. Hence T is strictly
causal.

The following theorem relates the strictly causal and

the strictly anticausal operators to each other.

2.15 THEOREM: An operator T is (strongly) strictly causal

if and only if T* is (strongly) strictly anticausal.
n(p) e
Proof: LC[AE(x)TE®= lim |} E(D; (u 1 %) TE 1. If we take
n(p) peP i=1

the adjoint of Z E[D, (u;,%;)1TE i
i=1

, then we have

p) ¢
{ E iT*E[D.(u.,zi)]. Since the adjoint is a linear
i=1 e
isometry in the space of bounded linear operators on a
Hilbert space, the first integral converges to T if and only
if the second integral converges to T*. Using a similar
procedure for UCIEx TdE(x), we see that T is strictly causal
if and only if T* is strictly anticausal.

In order to state and prove the additive decomposition




theorem for arbitrary operators, we first need to define a

new class of operators which will be called spacelike.

For a diamond set D(u,%) we define the projection

z- _&_
2.34. Eu I-E Eu.

With this definition, we say that an operator T is spacelike

if
2.35.  TE[D(4,2)] = ELTE(D(u4,2)]
and
2.36. E(D(4,2)]T = E[D(u4,2)}TE"

for all diamond sets D(u,?).
We can obtain an integral characterization of spacelike

operators by defining the following integrals.

X . n{p) zi
2.37. stx dE(x) = lim EuiTE[Di(ui,li)].

peP i=1
n(p) L,
2.38. S[dE(x)TE: = lim ﬁ E[Di(ui,li)]TEul.
peP i=l - 3

The limit is taken in the uniform topology over the set of
all partitions of M into diamond sets. We can also take
limits in the strong topology in which case we obtain the
integrals SS[E:TdE(x) and ss}dE(x)TE:. We then have the

following theorem.




.

2.16 THEOREM: For a bounded linear operator T, the fol-

lowing are equivalent.

i) T is spacelike.
2.39. ii) S[EJTdE(x) = S[AE(x) TE; = T .
2.40.  iii) SS[EYTAE(x) = SS[dE(X)TE} = T.

Proof: Similar to the proof for the causal case.
We also obtain the following theorem for the relation-

ship between a spacelike operator T and its adjoint T¥*.

2.17 THEOREM: T is spacelike if and only if T* is space-
like.
Proof: TE[D(4,2)] = ESTE[D(u,%)]<=>E(D(4,2)1T*

= E[D(4,2)IT*E, and,

E(D(u,2)]T = E[D(u,2) ) TE <=>T*E(D(u,2)]

- zﬁr*eln(u,z)l.

Finally, we obtain the additive decomposition theorem

for an arbitrary bounded linear operator.

2.19 THEOREM: Let T be an arbitrary bounded linear oper-

ator. Then T can be decomposed as T = C + A + S where C is
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strictly causal, A is strictly anticausal, and S is space-
like if and only if the integrals |
UC/E, TAE(x) , LC[AE(x)TE® ,

Lc/E*raE(x) , UC/QE(X)TE, ,
s]xirdz(x) and sfds(x)TE:
exist and satisfy

2.41. UC[E, TdE(x) = LC[AE(x)TEY,

2.42. LC[EVTQE(x) = UC[dE(x)TE,,

and

2.43. S[E[TAE(x) = S[dE(x)TE] ,
in which case the decomposition is given by

2.44. C = UC[E,TdE(x) = LC[dE(x)TE",

2.45. A = LC[E'TAE(x) = UC[AE(X)TE,,

and

2.46. s = S[E[TAE(x) = S[AE(x)TE,.

Proof: First assume that all the integrals exist and sat-

isfy the required relationships. Then

R W e T e e g e
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n(p)
T = UC/TAE(x) = lim i TE (D, (u;,2,)]

peP i=l
n(p) li zi
=1lim ) (E " +E, +E ITE[D; (u;2,;)]
peP i=l i i
n(p) li n(p)
= lim E TE[Di(ui,ti)]+lim TE[Di(ui,Ri)]
peP i=1 pePi=l
lim nﬁp) “ire (D, (u;.8y)]
+ E D, (u,,
s Y TR N N

= Lc[sxrdz(x)+ucfzxrds(x)+s[z§rda(x).

Similarly,

T = LC[dE(X)T
= UCIdE(x)TEx+chdE(x)TEx+sde(x)TE§

We have

UC/ E CAE(x) = ucjrx[ucfsy'rdn(y)lds(x)

= UC[E,TdE(z) = C.

Similarly, LC[/AE(x)CE* = C.
Hence C is strictly causal.
Similarly, A is strictly anticausal, S is space-

like, and therefore this is the desired decomposition.

Now, suppose that the desired decomposition exists.

Then

! W i,

u;_“
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UC/E,TAE(x) = UC[E, (C+A+S)dE(x)

= UC[ExCdE(x)+UCfExAdE(x)+UCfEdeE(x).

n(p)
UC[E_AQE(x) = lim ﬁ E AE[D, (u,,%.)]
X pePisl uy - e T

* nﬁp) wy ; :
= lim E E YAE[D. (u.,.)]) = 0.
peP i=1 4§ 170

§(p)
lim E SE[(D,(u,,2,)]
PR ARE R TR K

n{p) li
= lim E, E “SE(D, (u,,2,)] = O.
SR T N S

UC[E, SAE (x)

Hence UC[E TdE(x) = UC[E,CdE(x) = C.
Similarly LC/dE(x)TE® = C. Thus C is of the required
form. In the same manner, A and S can be shown to have
the required form.

We have a similar theorem for additive decomposition

into operators defined by strongly convergent integrals.

2.20 THEOREM: Let T be an arbitrary linear bounded
operator. Then T can be decomposed as T = C + A + §
where C is strongly strictly causal, A is strongly
strictly anticausal, and S is spacelike if and only if

the integrals

i ——————
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SUC[E,TdE(x) SLC[AE (x) TE®,

SLC/E*TAE(x) , SUC[AE(xX)TE,,

SS/E,TdE(x) and SS[QE (x) TE}

exist and satisfy

2.47. SUC[E TAE(x) = SLCfAE(x)TE®

2.48. SLC/E*TQE(x) = SUC[dE(X)TE, .

and

2.49. SS[E[TdE(x) = SS[4E (x) TE],

in which case the decomposition is given by
2.50. C = SUC[E TAE(x) = SLC[dE(x)TE™,
2.51. A = SLC[E*TAE(x) = SUC[dE(X)TE,,

and

2.52. S = SS[E,TdE(x) = SS{dE(x)TE] .
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CHAPTER III
CONCLUSIONS

Following the development of resolution space for the f
two~-dimensional special relativistic case, it would be
nice to extend the development to the four-dimensional
special relativistic case, and then to the general rela-
tivistic case. However, no way has been found to extend
the results in this paper to even the three-dimensional

special relativistic setting.

One major problem has been the attempt to keep a
point development of resolution space. The lack of an
ordering on the space-time manifolds presented difficulties
even in the two-dimensional case. By using diamond sets
it was possible to keep a semblance of the point develop-
ment, but even in this case special points had to be
introduced, and attempts to extend the space-time topology
to include the extra points in such a manner as to con-
tinuously extend the metric were fruitless.

We attempted to extend the diamond sets to higher
dimensions, but we were unable to find a higher dimen-
sional analogue of the diamond sets. Hence, it would
appear that the diamond sets are peculiar to two dimen-
sions. However, the Borel sets in two dimensions can be

generated from the diamond sets, and possibly a higher




dimensional development could proceed from a purely set
viewpoint without recourse to points. Such a development
would use the spectral measure E with its projections E(A)
and not even try to bother with point projections such

as EY. We feel that this technique would end up produc-
ing much the same results paralleling classical resolution

space as in the two-dimensional case.

Although most of the results mirrored those of
classical resolution space, one new type of operator was
obtained which appears to be a generalization of the
memoryless operator. This is the spacelike operator
which was introduced in the decomposition theorem. It
is conjectured that if the inverse of a spacelike oper-
ator exists, then it will also be spacelike.

However, other than this one interesting conjecture
the extension of resolution space to a relativistic set-
ting seems to offer little promise of new insights into

operator theoretic systems theory.

ee———
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